Rescue of LV Dysfunction in a Pig Ischemia-Reperfusion Injury Model By Human Amnion-derived Mesenchymal Stem Cells Tracked by Manganese-Enhanced MRI

Rajesh Dash1, Ildiko Toma1, Fumiaki Ikeno1, Jennifer K. Lyons1, Shahriar Heidary1, Marie-Claude Parent1, I-Ning E. Wang1, Xiaohu Ge1, Justin Lam1, Jaehoon Chung2, Paul J. Kim1, Kaori Nakagawa1, Svetlana Lyalina1, Grace Do1, Robert C. Robbins5, Michael V. McConnell1,4, Alan C. Yeung1, Phillip C. Yang1, Phillip Harnish5, and Phillip C. Yang1
1Cardiovascular Medicine, Stanford University Medical Center, STANFORD, CA- CALIFORNIA, United States, 2Medicine / Cardiology, University of Illinois-Chicago, Chicago, IL, United States, 3Cardiac Surgery, Stanford University Medical Center, 4Electrical Engineering, Stanford University, 5Eagle Vision Pharmaceutical Corporation, Downingtown, PA, United States

Background:
Although stem cell delivery restores cardiac function after myocardial infarction (MI), it is unclear whether cells survive/engraft in the heart following transplantation. To investigate stem cell viability in vivo, we used a Manganese-Enhanced MRI (MEMRI) contrast agent, EVP-1001-1 (Eagle Vision Pharmaceuticals, Inc) in a pig ischemia-reperfusion (IR) injury model. EVP-1001-1 specifically enters live cardiac myocytes, and T1-weighted MRI after EVP-1001-1 injection delineates infarct zones as a MEMRI defect. EVP-1001-1 is also taken up avidly by live stem cells. We tested EVP-1001-1’s ability to track human amnion-derived mesenchymal stem cells (hAMSCs) after transplantation into pig hearts post-IR.

Hypotheses:
hAMSC delivery will improve cardiac function, and hAMSC survival will be tracked in vivo / longitudinally using MEMRI.

Methods:
Five adult farm pigs underwent 60min LAD coronary IR. One week post-IR, pig hearts were injected with either hAMSCs (~50 million cells/heart, n=3) or normal saline (NS, n=2) into ~8 peri-infarct and infarct zones, by BioCardia catheter injection (Biocardi, Inc.). Cardiac MRI (CMR) was performed to assess ventricular function (ejection fraction, EF%), infarct % by Delayed Gadolinium Enhancement MRI (DEMRI), and MEMRI with EVP-1001-1 weekly post-IR. (DEMRI & MEMRI: GE 3T Signa Excite HD: FGRE-irP: RT 4.7ms, TE 1.3ms, FOV 30, TI 200ms, FA 10, ST 10mm, 222x192)

Results:
hAMSC and NS EFs were similar at baseline (57±4%, n=5) and 1wk post-IR (24±6%). However, hAMSC injection improved EFs at 1, 2, & 3wks post-hAMSC delivery, compared to NS-injected swine (Fig. 1A). One possible mechanism for the improved EF was increased peri-infarct viability with hAMSCs. In support of this hypothesis, MEMRI defect (infarct) volume decreased from d7 to d21 post-IR in hAMSC hearts (60±12% reduction, n=3) more than in NS hearts (38±18% reduction, n=2). MEMRI also identified regions of high contrast-to-noise ratio (CNR) within infarct zones in hAMSC hearts (Figure 2: hAMSC: 8.6±1.4*; NS: 4.9±0.8, n=3, *p<0.05), suggesting increased EVP-1001-1 uptake by live hAMSCs within the infarct zone (Figure 2A). This signal increased from d10 to d17 (data not shown). Human nuclear antigen (hNA) immunostaining (Fig. 3B) revealed intact hAMSC cell clusters in infarct zones at d17 post-transplantation.

Conclusions:
Preliminary results demonstrate that hAMSC delivery post-IR improves systolic function compared to control. The mechanism for this functional restoration may be improved peri-infarct viability, as evidenced by a lower MEMRI defect volume in hAMSC-treated hearts. High MEMRI CNR within the infarct zone was associated with positive hNA staining, providing evidence for live hAMSC populations nearly 3 weeks after cell delivery. MEMRI allows both myocardial viability assessment and tracking of stem cell survival/engraftment in vivo.

Figure 1. A) hAMSC-injected swine exhibited higher EFs than NS-treated swine at one, two, and three wks post-injection. Figure 2. MEMRI CNR of infarct zone higher in hAMSC-treated hearts.