Molecular MRI-based Detection of an Alpha-1A Receptor Agonist Treatment for Ischemia-Induced Cardiac Apoptosis

Rajesh Dash1, Justin Lam1, Ildiko Toma1, Yongquan Gong2, Robert C. Robbins2, Paul C. Simpson1,4, and Phillip C. Yang1
1Cardiovascular Medicine, Stanford University Medical Center, San Francisco, CA, United States, 2Cardiac Surgery, Stanford University Medical Center, 3Medicine / Cardiology, UCSF Medical Center, San Francisco, CA, United States, 4Cardiology, San Francisco VA Medical Center, San Francisco, CA, United States

Background:
Myocardial infarction (MI) damages the heart through a combination of programmed cell death (re: apoptosis) and necrotic cell death. The relative contribution of apoptosis to ischemic cardiomyopathy and the benefit of specifically preventing apoptosis post-MI is unknown. Our laboratory previously developed and validated an in vivo, MRI-detectable apoptosis probe. Annexin-V (ANX), which binds to cells in the earliest stages of apoptosis, was conjugated to superparamagnetic iron oxide (SPIO) nanoparticles, allowing for the non-invasive detection of early apoptotic cell populations (ANX-SPIO r1: 8.6 ± 0.61 mM−1 s−1 and r2: 326 ± 16 mM−1 s−1). To test the effect of apoptosis reversal in an MI model, we employed A61603 (A6), an α1-adrenergic receptor agonist, which has been shown to rescue cardiac cells from apoptosis through activation of the cardio-protective ERK pathway.

Hypothesis:
A6 therapy will protect against MI-induced cardiomyopathy, and cardiac MRI of systemic ANX-SPIO will detect and monitor this therapeutic effect in vivo.

Methods:
Mice underwent MI (via LAD ligation) along with a subcutaneous pump implant that delivered A6 or vehicle (VEH) solution at a rate of 10 ng/kg/day over two weeks. Cardiac MRI (CMR) was performed at 2 days, 1 week, and 2 weeks post MI. ANX-SPIO was injected by tail vein 1 day prior to CMR to assess apoptosis (by T2* signal loss) in parallel with function.

Results:
A6-treated (39±5%, n=3) and VEH-treated (38±10%, n=6) mice exhibited identical ejection fractions (EFs) 2 days post-MI. However, A6-treated mice exhibited significantly (p<0.05) higher EFs vs. their VEH-treated counterparts at both 1 week (A6, n=6: 37±9%; VEH, n=5: 18±4%) and 2 weeks (A6, n=5: 33±10%; VEH, n=6: 14±7%) post-MI (Figure 1). Upon T2* decay assessment, A6-treated mice showed significantly (p<0.05) less T2* signal loss after ANX-SPIO delivery compared to VEH-treated mice at 1 week post MI (A6 T2*: 19±2ms; VEH T2*: 14±1, n=3), reflecting less myocardial uptake of ANX-SPIO and therefore less cardiac cell apoptosis in A6-treated hearts (Figure 2).

Conclusions:
These results suggest that cardiomyocyte apoptosis is a prominent contributor to the functional impairment of ischemic cardiomyopathy and that A6-mediated cardioprotection from MI-induced apoptosis preserves cardiac function. Moreover, Cardiac MRI and T2* imaging of ANX-SPIO can non-invasively detect A6’s therapeutic effect longitudinally.

Figure 1. Ejection Fraction of A6 versus Vehicle Mice

Figure 2. Myocardial T2* Decay from ANX-SPIO: 1 week post-MI
