3D TV-Based Compressed MR Image Reconstruction Using a Primal Dual Algorithm
Abolfazl Mehranian1, Hamidreza Salighab Rad 2, Mohammadreza Ay 3, and Arman Rahmim3
1Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences of Medical Sciences, Tehran, Iran, 2Research Center for Science and Technology in Medicine, Imam Hospital, Tehran, Tehran, Iran, 3Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States

Introduction
Emerging trends toward fast magnetic resonance (MR) imaging focus on partial Fourier measurements and k-space undersampling. However, undersampling inevitably violates the Nyquist sampling criterion, thereby Fourier reconstructions exhibit aliasing artifacts and reduced signal-to-noise ratio (SNR). By establishing a direct link between sampling and sparsity, compressed sensing (CS) has, made it possible to accurately reconstruct MR images from undersampled k-spaces [1]. In this study, we introduced a fast primal-dual (PD) algorithm for CS-MR image reconstruction using variable-density spiral trajectories. The algorithm was developed for 3D total variation (TV) and Huber regularizations and was found to be efficient and promising for fast 3D MRI.

Materials and Methods
Image Acquisition: We performed CS-MRI in a cardiac dataset of size 128x128x30 (Fig. 1A) with 90% k-space undersampling using a stack of variable-density spiral trajectories and 40 dB complex additive Gaussian noise. In order to reconstruct this dataset, let us consider the following compressed MR acquisition model:

\(\mathbf{y} = \mathbf{F} \mathbf{x} + \mathbf{w} \)

where \(\mathbf{y} \in \mathbb{C}^M \) is the undersampled k-space of the original cardiac dataset \(\mathbf{x} \in \mathbb{R}^N \), contaminated with the additive noise \(\mathbf{w} \). \(\mathbf{F} \in \mathbb{C}^{MxN} \) is a unitary Fourier basis through which \(\mathbf{x} \) is being sensed and \(\Phi \in \mathbb{R}^{MxN} \) is a binary sampling matrix that compresses (reduces) the frequency data to \(M < N \) samples (sampling ratio: 0.20). One approach to recover \(\mathbf{x} \) is by zero-filling the missing k-space samples followed by an inverse Fourier transform. As shown in Fig. 1B, this method, however, results in artifacts obscuring anatomical features and thus reduced SNR. The most efficient approach is however to reconstruct \(\mathbf{x} \) by the following CS problem:

\(\tilde{\mathbf{x}} = \text{argmin}_{\mathbf{z}} \frac{1}{2} \| \Phi \mathbf{F} \mathbf{z} - \mathbf{y} \|^2 + \beta \sum \phi(\| \nabla \mathbf{z} \|) \)

where the first term enforces data fidelity and the second, known as prior, promotes sparsity, and \(\lambda \) controls the balance between them. \(\nabla \) is a 3D gradient operator and \(\phi \) is a potential function. For the TV and Huber sparsity-promoting priors, we define \(\phi_{\text{TV}}(t) = t \) and \(\phi_{\text{Huber}}(t) = t^2/2\alpha \) if \(t < \alpha \) and \(t - \alpha/2 \) otherwise, where \(\alpha \) reduces the staircasing effect of the TV prior. This CS approach in fact attempts to exploit the sparsity of the gradients of \(\mathbf{x} \) to recover it from its undersampled k-space i.e. \(\mathbf{y} \).

Reconstruction algorithm: We recast the primal problem (2) into its corresponding primal-dual formulation as follows:

\(\max_{\mathbf{u}} \left(\min_{\mathbf{z}} (\mathbf{V}^\top \mathbf{u}) + G(\mathbf{z}) \right) - F^\top (\mathbf{u}) \)

where \(\mathbf{V} \) is dual of the gradient operator, \(F^\top \) is the dual of an \(L^1 \)-norm used in TV prior, and \(G(\mathbf{z}) \) is the first term in (2). To solve the above problem, we adopted the following algorithm proposed in [2] and solved its proximal maps, \(\text{prox}_\phi(t) \), for TV and Huber-based CS MRI:

\(\mathbf{u}^{k+1} = \text{prox}_{\lambda \phi_{\text{TV}}}(\mathbf{u}^k + \lambda \mathbf{V}^\top \mathbf{e}^k) \)

\(\mathbf{e}^{k+1} = \mathbf{e}^k + \lambda \mathbf{V} \cdot \mathbf{u}^{k+1} - \mathbf{V} \cdot \mathbf{e}^k \)

Proximal map of F*: To solve this map, we make use of Moreau’s identity [3], as well as the fact that the proximal map of an \(L^1 \)-norm is a point-wise soft thresholding. Thus, for a TV prior, we can derive \(\text{prox}_{\lambda \phi_{\text{TV}}}(\mathbf{u}) = \mathbf{u}/\max(1,|\mathbf{u}|) \). For a Huber prior, we make use of Lemma 2.6 in [3], and then derive its map as \(\text{prox}_{\lambda \phi_{\text{Huber}}}(\mathbf{u}) = \text{prox}_{\lambda \phi_{\text{TV}}} \left(\frac{\mathbf{u}}{\max(1,|\mathbf{u}|)}/\sqrt{1 + \lambda |\mathbf{u}|} \right) \).

Proximal map of G: To solve this map, we equate it first derivative to zero, thereby a linear system of equations is obtained. By making use of matrix inversion lemma and the fact that \(F^\top F = F^\top F + \lambda \Phi^\top \Phi \), the special structure of \(\Phi \), and, we then derive the map as \(\text{prox}_{\lambda \Phi^\top \Phi}(\mathbf{z}) = \mathbf{z} + (\lambda \mathbf{I} + \mathbf{z}) \Phi^\top \Phi^\top \Phi \).

Results and Conclusions
Fig. 1 compares the results of zero-filling reconstruction with those of the proposed primal-dual (PD) TV and Huber regularizations. Our algorithms sufficiently recover the original images and their diagnostically important details. As presented, the algorithms significantly improved the SNR in the reconstructed dataset. Fig. 2A shows improvement in SNR for the algorithms versus computation time (CPU) in a 2.6 GHz PC. As seen, the Huber prior can achieve better SNR performance provided an appropriate parameter selection. It is also noticeable that the PD algorithm recovers the 3D MR images within ~20 seconds. We also compared this algorithm with the best case performance of three advanced algorithms, namely, split augmented Lagrangian shrinkage algorithm (SALSA) [4], forward-backward splitting (FBS) [3] and Douglas-Rachford Splitting (DRS) [5]. The results are shown in Fig 2B. As seen, the proposed algorithm is performed faster than the other algorithms in SNR enhancement and hence in image reconstruction.

References