ALTERED CEST SPECTRUM WITH DIFFERENT IMAGING READOUT SCHEMES

Sheng-Min Huang1, Shang-Yueh Tsai1, Teng-Yi Huang2, Yi-Chun Wu3, and Fu-Nien Wang1

1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan, 2Graduate Institute of Applied Physics, National Chengchi University, Taipei, Taiwan, 3Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 4Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan

Introduction

Chemical exchange saturation transfer (CEST) is a novel technology for measuring microenvironment properties and has promising in vivo applications such as pH detection and molecular imaging. [1, 2] Conventionally, the pulse sequence of CEST consists of two parts: magnetization preparation and image acquisition. A long continuous wave (CW) or a series of pulses are utilized for the saturation transfer effect in the magnetization preparation part, and the optimization method of the magnetization preparation part had been studied in previous reports. [3, 4, 5] Here we aim to investigate the effect of the image acquisition RF on the Z-spectra and 

Materials and Methods

As shown in Fig. 1, a dual gel phantom was prepared by 50mM creatine in 3% agarose and filled into a 50 mL centrifuge tube, which was filled with 3% agarose only. The pH value of creatine was titrated to 6.96 carefully by sodium hydroxide for fine CEST contrast. All experiments were carried out on a 4.7 T Bruker Biopsic 47/40 spectrometer with a volume coil for both RF transmission and reception. Fastmap shimming was used to reduce the field inhomogeneity, and the basic frequency of water was carefully adjusted. RARE and spin-echo EPI acquisitions were performed after an identical 1.25μT, 4 sec CW RF magnetization saturation irradiation. Scanning parameters including RF pulse shape, length and power were all identical for ensuring that number of refocusing RF pulses was the only varying factor. Hermite RF pulse shape was used both for excitation and refocusing, and the length of π/2 RF and π RF were 2.368 ms and 1.500 ms, where the corresponding bandwidth were both 2280 Hz. Imaging parameters were: FOV=8x8cm, matrix size=64x64, slice thickness=5mm, TE (effective TE for RARE)=50ms, TR=11.5s. The off-resonance frequencies of CW RF were swept between -600 to +600 Hz of water frequency with a step of 100 Hz. Z-spectra and MTR asym were both evaluated by MATLAB scripts.

Results

Fig. 2 shows the two z-spectra evaluated from RARE and spin-echo EPI image series. It is noted that the z-spectrum acquired by RARE was lower than by spin-echo EPI. This difference indicated that direct saturation, or so-called spillover effect, was higher in RARE. Since RARE and spin-echo EPI are vary with the number of refocusing RF, it is speculated to be the contribution of multiple π RF pulses. In Fig. 3, the MTR asym of RARE image and spin-echo EPI image were displayed. Note the larger MTR asym was achieved by spin-echo EPI, since the spillover effect may reduce the MTR asym by using RARE.

Discussion and Conclusion

Conventionally, the spillover effect explains the signal suppression by the off-resonance RF of magnetization preparation part of CEST pulse sequences. In this study, we have demonstrated that the imaging acquisition RF also has a spillover effect because of refocusing π RF pulse. The imaging RF effects were ignored previously. Since both the power and bandwidth of 180 refocusing RF pulse are relatively large, the spillover effect generated by multiple refocusing RF pulses is strong. Consequently, though we can obtain fine image quality by RARE acquisition, special optimization of the multiple refocusing RF pulses is necessary. Further investigation is needed for applying high quality RARE for CEST imaging.

References