In amnio MRI imaging for the identification of abdominal pathologies

Tom Roberts*,1, Francesca Norris*,1, Helen Carnaghan1, Jack Wells1, Bernard Siow1,2, Peter J Scambler1, Agostino Pierro1, Simon Eaton1, and Mark Lythgoe1
1UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, London, United Kingdom, 2Centre for Mathematics and Physics in Life Sciences & Experimental Biology (*Joint First Authors), University College London, London, United Kingdom, 3Paediatric Surgery Unit, UCL Institute of Child Health, University College London, London, United Kingdom, 4Centre for Medical Image Computing, University College London, London, United Kingdom

Introduction
Transgenic mice are integral to the study of congenital disease development and gene function. μMRI is a non-invasive technique that has been successfully used to image ex vivo mouse embryos [1]. However, there is currently no established approach for assessing ex vivo embryos within the amniotic sac using MRI. Such a method would be valuable for determining the phenotype of mutant embryos in which the abdominal wall has not closed properly and the intestine loops are either exposed to amniotic fluid (gastrochisis) or contained within a membrane (omphalocele). Determining such phenotypes is difficult using light microscopy because the structures are delicate and dissecting the amniotic sac invariably causes damage. In this study, we have developed an in amnio imaging methodology, in which the embryo is retained in the amniotic sac, enabling visualisation of the complex relationship between amnion, placenta and embryo. In utero, these phenotypes would be problematic to investigate as the fine membranous tissues involved would be very difficult to resolve due to motion. Our novel methodology enables the identification of abdominal wall and amnion pathologies.

Methods
Sample Preparation: An E17.5 mutant embryo with an indeterminate abdominal wall defect was excised from the mother, removed from the uterine cavity but retained in its amniotic sac and immediately immersed in 4% paraformaldehyde (PFA) fixative. For imaging, the embryo was placed in a 15ml Corning tube with a gauze layer above the sample to minimise movement. Image acquisition and processing: Imaging was performed on a 9.4T VNMRS system (Agilent Technologies Inc) with a 26mm volume coil (RAPID Biomedical GmbH). The mutant embryo was imaged using a multi-slice fast spin echo sequence (Effective TE/ETL/ESP/k/TR/FA/NSA=60/8/15/80/36), matrix size 2562, FOV 16x16mm2, slice thickness 0.25mm, slices 40. Images were visualised in Amira 5.4 (Visage Imaging, Inc. CA, USA).

Results
Figure 1a clearly shows important amniotic and embryonic anatomical structures. The border of the amniotic sac is clear and the placenta (yellow arrow), the umbilical cord (green arrow) and the protruding abdominal contents (blue arrow) characteristic of such mutants can be visualised. Figure 1b shows a different slice from the same mutant embryo, higher in the axial direction with a zoomed-in view to emphasise a thin, dark line (red arrow) extending from the abdominal region to the amniotic sac. This fine structure is likely to be a membranous tissue characteristic of a ruptured omphalocoele defect.

Discussion and Conclusion
We have developed a new MRI methodology to image mouse embryos in amnio. This was successfully applied to investigate a mutant with an indeterminate abdominal wall defect. The MRI images enabled visualisation of a small membrane extending from the fetal abdomen to the amniotic sac suggestive of a ruptured omphalocoele defect. The high water content of the amniotic fluid provides a bright background using our scan parameters. A fast spin echo sequence was used to reveal the ruptured omphalocoele membrane because blood in the amniotic fluid caused image artefacts when using a gradient echo sequence.

Our images represent the first attempts at in amnio MRI. Many structures are easily visualised without the need for contrast agents which is advantageous because direct injection of contrast agents through the amniotic sac can lead to its collapse. As the embryos are in amnio but ex vivo, fine structures are resolvable which would otherwise be extremely difficult to distinguish in utero. In conclusion, we present the first steps towards in amnio MR imaging which can be used to identify the nature of abdominal wall defects, and in future studies could easily be extended to examining a host of different developmental diseases and conditions.

References: