ESTIMATION OF PLACENTA FUNCTION USING T²* MEASUREMENTS DURING HYPER- AND NORMOXIA

David Alberg Peters³, Anne Sorensen¹, Ernst-Torben Wilhelm Fründ⁴, Ole Bjarne Christiansen⁵, and Niels Uldbjerg⁶

¹Department of Clinical Engineering, Central Denmark Region, Aarhus N, Denmark; ²Department of Gynecology and Obstetrics, Aarhus University, Aalborg Hospital, Aalborg, Denmark; ³Department of Radiology, Aarhus University, Aalborg Hospital, Aalborg, Denmark; ⁴Department of Gynecology and Obstetrics, Aarhus University Hospital, Skejby, Aarhus N, Denmark

Introduction

MR imaging is becoming widely used for prenatal diagnosis¹. Conventional prenatal imaging focuses on structural changes, but recently several groups have begun to investigate changes in the MR signal during oxygen breathing. The main focus has been changes in the BOLD signal²,³ in organs such as liver, brain, lungs and heart. In this study we investigate the feasibility of pre- and post-oxygen T²* measurements to evaluate the function of the placenta.

Methods

Six healthy pregnant women (gestational week 28-35) were examined in a GE 450W magnetic resonance scanner (GE Healthcare, Milwaukee, WI). The MR examination was performed as follows: Following initial planning and reference scans a gradient echo sequence with multiple readouts was performed: TR=70.9 ms, TE=3.02 to 67.5 ms in steps of 4.3 ms, FOV 350x350 mm, Matrix 256x128 resulting in an inplane resolution of 1.37x2.73mm, and three slices of eight mm in thickness. Following the initial multi echo acquisition, the mother was supplied with oxygen through a mask. After 5 minutes of oxygen breathing a second multi echo MR scan was performed with identical settings to the pre-oxygen scan, while the mother was wearing the oxygen mask.

A large region of interest (ROI) was drawn in the placenta by a trained obstetrician for each scan. In case of severe fetal motion the ROI was either moved or the given echo time discarded. The average signal from each ROI as a function of echo time was plotted and a monoexponential fitting function (figure 1). Pre- and post-oxygen T²* values were compared using a Students t-test. A 95% significance level was used.

Results and discussion

T²* in the placenta increased for all subject from pre- to post-oxygen (figure 2). The pre oxygen T²* values displayed a large variability between the measured subjects, which could be caused by differences in homogeneity of the shim for each subject. The mean T²* value for all subjects increased significantly between pre- and post-oxygen scans, from 71±10.8 ms to 99.5±18.4 ms (P=0.009). Figure 3 shows a map of T²* values within the ROI averaged in figure 1. It is clear that there is spatial heterogeneity in the pre-oxygen map compared to the post-oxygen map which is more homogenous. The areas with low T²* (blue) (figure 3, top) could represent the fetal side of the placenta which has an inherently lower oxygenation⁴ than the maternal side and hence a higher fraction of deoxyhemoglobin which is paramagnetic and lowers T²*.

Conclusion

We have demonstrated that T²* in the placenta changes significantly after oxygen breathing. With further development this method could be used to evaluate the function of placenta using a non-invasive method. This could for instance be of great value in determining the optimal time to deliver a growth restricted fetus.

References