Quantitative in vivo 19F MRI of transplanted pancreatic islets using clinically applicable, non-emulsion nanoparticles
Mangala Srinivas1, Karolina Andralojc2, Andor Veltien3, Maarten Brom2, Leike Joosten2, Arend Heerschap3, Jolanda de Vries1, Carl Figdor5, Otto Boerman2, and Martin Gotthardt2

1Tumor Immunology, RUNMC, Nijmegen, Gelderland, Netherlands, 2Nuclear Medicine, RUNMC, Nijmegen, Gelderland, Netherlands, 3Radiology, RUNMC, Nijmegen, Gelderland, Netherlands

Introduction
Pancreatic islet transplant is a promising therapy for type I diabetes patients, with over 100 ongoing clinical trials. However, the lack of an appropriate quantitative technique for tracking the islets after transplant has hindered development. Pancreatic islets are difficult to label for imaging, in part because they are non-phagocytic, fragile and surrounded by a membranous capsule. Islets have recently been 19F-loaded using perfluorocarbon emulsions [1]. Here, we label primary murine pancreatic islets using a novel multimodal imaging probe that allows for quantitative 19F MRI and fluorescence imaging. Importantly, the label nanoparticles can be formulated for clinical use, and are not emulsion-based, consisting instead of a fluorocarbon core with a fluorescent dye encapsulated within a polymer coat [2]. 19F MRI allows for quantification directly from image data [3].

Methods
Murine pancreatic islets were isolated and labeled overnight. Viability, insulin secretion and 19F loading were determined and optimized. Confocal microscopy was carried to localize the 19F nanoparticles within the islets. For in vivo validation of the method, islets were isolated, labeled and transplanted in the left and right (100 and 600 islet isografts respectively) hind limb muscle of recipient mice. In vivo MRI and optical imaging were performed at various time points, up to two weeks after transplantation. MRI was carried out in a 7T horizontal bore system with a 1H/19F volume coil.

Results and Discussion
We found that labeling the islets required the use of a transfection agent to increase 19F loading. Toxicity was minimal when the ratio of transfection agent to the particles was optimized. We imaged islets after transplantation in the quadriceps, and were able to detect them using both MRI and fluorescence in vivo (A and B respectively). This mouse received 600 islets in one side and 100 in the other. This difference in signal intensity is clearly visible in the images. Analyses performed on excised tissue confirmed that the transplanted islets produced insulin. Finally, we also carried out confocal microscopy to show that the imaging label is contained within transplanted islets (C; an intact islet with cell nuclei in blue and label particles in red). The islets remain detectable for at least two weeks post-transplant (data not shown). Thus, we describe the use of a novel imaging agent to allow quantitative in vivo imaging of transplanted islets without significant effects on their functionality or viability. Furthermore, the label is applicable to a cell type that is known to be difficult to label for in vivo imaging. Finally, the use of a non-emulsion based agent allows for greater stability and reproducibility of the agent.

Conclusion
Here we present a protocol for optimal islet labeling with 19F/fluorescent nanoparticles. Cells are viable and functional after 19F loading and detectable in vivo. Finally, the nanoparticles are taken up within the islets and are retained for at least two weeks post-transplant. The use of nanoparticles allows for greater stability of the constructs, which is necessary for long-term imaging of transplanted cells.

Acknowledgements
This research was supported by investment grants NWO VENI 700.10.409, middelgroot 40-00506-90-06021 and BIG (VISTA); ENCITE (HEALTH-F5-2008-201842); and Spinoza.

References