Relaxivities of Conventional and Protein-Binding Gd-Based Contrast Agents in Human Blood and their Implications for Dosing in CE-MRA

Jeffrey Harold Maki1,2, Gregory J Wilson3, Miles A Kirchin4, Sarah Bastawrous5, and Puneet Bhargava2
1Radiology, University of Washington, Seattle, WA, United States, 2Radiology, Puget Sound VAHCS, Seattle, WA, United States, 3MR Clinical Science, Philips Medical, Cleveland, OH, United States, 4Medical Affairs, Bracco Diagnostics, Milan, Italy

Introduction

With the recent proliferation of several “high relaxivity” protein-binding Gd-based contrast agents and their subsequent adoption for CE-MRA, it is important to fully understand the relaxivity properties of these agents when imaged in blood at the relatively high arterial concentrations inherent to CE-MRA – not the typical circumstances under which r1 and r2 relaxivities are measured in the literature (typically measured in plasma at much lower concentrations) (1,2). The practical nature of this becomes apparent considering studies such as Schneider et al. (3), a dose ranging study of the high relaxivity agent gadobenate (Bracco Diagnostics) where 84 patients undergoing CE-MRA (DSA comparator) showed significantly better accuracy at a dose of 0.1 vs. 0.2 mmol/kg. Our aim was to better understand the r1 and r2* relaxivities of Gd contrast agents in whole human blood, with particular attention to understanding why higher doses/injection rates may actually be detrimental.

Methods

This was an IRB approved phantom study. Whole human blood was doped with 3 different Gd agents, gadoteridol (ProHance, Bracco Diagnostics), gadobenate (MultiHance, Bracco), gadofosveset (Ablavar, Lantheus Medical), at concentrations of 0, 1, 1.5, 2, 3, 5, 7.5, 10, 15, 20 mmol. These were placed in 6 ml HDPE vials embedded in 2% agarose gel. Four additional phantoms contained gadoteridol in normal saline (NS) at concentrations of 0, 1, 3, 10 mmol. The phantom was inverted several times every 5-10 minutes throughout the study to avoid hematocrit layering. Imaging was performed at both 1.5T and 3.0T (Achieva, Philips Medical, Best, the Netherlands) in order to calculate T1 and T2* using the following sequences: Look Locker (IR-T1-TFE-EPI, TR 1sec, TE 5.4ms, FA 8°, EPI factor 3, ΔTi=15ms), Multi-Echo FFE (TR 200ms, TE1=1.5ms, ΔTE=2.4ms, FA 35°). In addition, CE-MRA 3D T1-FFE images were obtained at different TE’s (1.1-3.5ms) to look at simulated CE-MRA signal intensity vs. [Gd]. Regions of interest (ROIs) were placed in each imaged phantom and mean signal intensity measured. Data fits determined R1 and R2* using Matlab (Mathworks, Natick, MA) and the standard correction for Look Locker. Relaxivities r1 and r2* were evaluated based on the slope of the R1 or R2* vs. [Gd] data.

Findings

For all Gd concentrations, R1 was greatest for gadofosveset and least for gadoteridol, with gadobenate falling in the middle (Figure 1), as predicted by their commonly reported relaxivities (2). Also as expected, R1 decreased at higher field strength (Figure 2). Relaxivity (r1, defined as the regional slope of R1 vs. [Gd]) - Figure 1) appears non-linear, with an inflection point at approximately 3 mmol (arrow, Figure 1). Less than 3 mmol, the slope (r1) of gadofosveset > gadobenate > gadoteridol. Beyond 3 mmol, the slopes for all agents become nearly equal, and similar to that of gadoteridol in NS. R2* measurement demonstrated a surprising initial decrease in R2* (ie increase in T2*) as [Gd] increased at both field strengths up to approximately 2 mmol, most notable for gadoteridol > gadobenate > gadofosveset (Figure 3). Beyond this R2* increases, with 1/R2* (T2*) being on the order of 6 ms or less for [Gd] > 10 mmol at 1.5T (4 ms at 3.0T). Gadoteridol in NS behaved linearly over the entire range with R2* values of 4.9/4.6 mmol−1 s−1 at 1.5 and 3.0T respectively.

Analysis of 3D MRA SI data (Figure 4) demonstrates the benefit of the high relaxivity agents gadobenate and gadofosveset at lower [Gd], but the lack of improvement for higher [Gd] (generally ~ 5 mmol), with signal loss seen for [Gd] greater than this.

Discussion

Most literature values of r1 and r2 relaxivity are a) measured in plasma or serum, and b) based on [Gd] ranges of 0.1 mmol (1,2). For first pass MRA, expected [Gd] concentrations (typical injection rate of 2 mL/s) are on the order of 12 mmol (0.5M agents); i.e. falling into a non-linear range of r1. The observed r1 inflection point at ~3 mmol (Figure 1) is most pronounced for the protein-binding agents gadobenate and gadofosveset (and very minimal for gadoteridol in NS) at concentrations of < 1 mmol (1,2). For first pass MRA, expected difference r1 > 3 mmol, r1 very similar all agents. Note gadoteridol in saline (PH+NS) linear throughout. PH = ProHance, MH = MultiHance, Ab = Ablavar. Similar results at 3T (not shown).

Fully understanding the properties of different Gd contrast agents, particularly those with protein binding properties, in blood at typical CE-MRA concentrations is vital to use the contrast to best advantage for CE-MRA.

References