Intra-Renal Oxygenation in Contrast Induced Nephropathy Model by BOLD MRI: Comparison of Four Radio-Contrast Agents

Lu-Ping Li1, Hongyan Du2, Tammy Franklin3, Ujala Bokhary4, Maria Papadopoulou-Rosenzweig5, Richard Solomon6, and Pottumarthi V Prasad4

1Radiology Dept., Northshore University Healthsystem, Evanston, IL, United States, 2Center for Clinical & Research Informatics, Northshore University Healthsystem, Evanston, IL, United States, 3Radiation Oncology, Northshore University Healthsystem, Evanston, IL, United States, 4Medicine, Fletcher Allen Health Care, Burlington, VT, United States

INTRODUCTION
Since radio-contrast induced nephropathy (CIN) was recognized more than 50 years ago [Acta Med Scand. 1954; 150(4): 297-302], there have been continuing efforts to chemically modify radio-contrast agents to be less nephrotoxic. However, CIN remains as the third major source of in-hospital acquired acute renal failure and is associated with long-term morbidity and mortality in elderly patients and those with preexisting kidney insufficiency and diabetes [J Hosp Med. 2009; 4(8): 500-6]. Radio-contrast agents can be classified into three generations based on their osmolality (high, low and iso-osmolar). However, changes in the formulation have resulted in increasing viscosity which in turn leads to hemodynamic consequences. Epidemiological data are ambivalent probably because of the complex interplay of several factors involved (e.g. pre-existing conditions, pre-treatment management based on perceived risk etc.).

While pathophysiology of CIN is not yet fully understood, it is now well accepted that renal medullary hypoxia [Invest Radiol. 1999;34(11):685-91] plays an important role. Blood oxygenation level-dependent (BOLD) MRI is gaining acceptance as a non-invasive method for monitoring intra-renal oxygenation [Magn Reson Imaging Clin N Am 16 (2008) 613–25]. In a previous study, it was shown that administration of a 1st generation contrast agent (iothalamate) resulted in severe renal injury only when the kidneys were pretreated with agents inhibiting endogenous prostaglandins and nitric oxide [J Clin Invest 1994; 94:1069–75]. In another study, with the same model, it was shown that BOLD MRI technique can be used to monitor progressive changes in intra-renal oxygenation following administration of iothalamate [JMRI 2001; 13:744–7]. In the present study, we have compared four different radio-contrast agents with different osmolality, ionicity and viscosity as evaluated by BOLD MRI.

METHODS
The study protocol was approved by our IACUC. Male Sprague-Dawley rats were anesthetized by inactin (100 mg/kg i.p.) and femoral vein was catheterized. For the BOLD MRI study, four groups (total n=48) based on the contrast agent were further subdivided into pre-treatment group: receiving nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NNAME, 10mg/kg) and prostaglandin inhibitor, indomethacin (10 mg/kg) prior to radio-contrast, and control group: receiving two times saline instead. One of the four radio-contrast agents (Table-1) was administered at 1600 mgl. Group assignments were made in a random order and blinded fashion. Imaging was performed on a 3.0 T scanner (Magnetom Verio, Siemens, Germany) using a multiple gradient recalled echo sequence (TE=3.6-41.3ms; FOV=12x6cm; TR=69ms; bandwidth=320Hz/pixel; FA=30°; NEX=20; matrix: 256x256; slice thickness=2mm) to acquire 12 T2* weighted images. The rat kidneys were positioned in the middle of the standard knee coil. One transverse slice was selected in the middle of the kidney. BOLD MR images (3’ each) were acquired in sequence as described in the above timing diagram.

RESULTS

![BOLD MRI images showing intrarenal oxygenation](image)

<table>
<thead>
<tr>
<th>Brand name</th>
<th>Iodixanol</th>
<th>Iothalamate</th>
<th>Iohexol</th>
<th>Ioxaglate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodixanol</td>
<td>Visipaque</td>
<td>Conray</td>
<td>Omnipaque</td>
<td>NaxaBrix</td>
</tr>
<tr>
<td>Iodixanol</td>
<td>nonionic</td>
<td>ionic</td>
<td>nonionic</td>
<td>ionic</td>
</tr>
<tr>
<td>Osmolality (mOsm/L)</td>
<td>isomolar</td>
<td>1000</td>
<td>672</td>
<td>600</td>
</tr>
<tr>
<td>Iodixanol</td>
<td>320 mg/ml</td>
<td>282 mg/ml</td>
<td>300</td>
<td>320</td>
</tr>
<tr>
<td>Viscosity at 37°C</td>
<td>11.8</td>
<td>4</td>
<td>6.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>

TR=69ms; bandwidth=320Hz/pixel; FA=30°; NEX=20; matrix: 256x256; slice thickness=2mm; The images were obtained with a 3.0 T scanner. The rats were anesthetized by inactin and the femoral vein was catheterized. The contrast agents were administered at 1600 mg/l. Group assignments were made in a random order and blinded fashion. Imaging was performed using a multiple gradient recalled echo sequence (TE=3.6-41.3ms; FOV=12x6cm; TR=69ms; bandwidth=320Hz/pixel; FA=30°; NEX=20; matrix: 256x256; slice thickness=2mm) to acquire 12 T2* weighted images. The rat kidneys were positioned in the middle of the standard knee coil. One transverse slice was selected in the middle of the kidney. BOLD MR images (3’ each) were acquired in sequence as described in the above timing diagram.

R2* maps were generated online on the scanner. ROIs were defined to represent inner- and outer-stripes of outer medulla (ISOM, OSOM), inner medulla (IM) and cortex (CO). R2* values, indicating relative level of hypoxia, was assessed by a linear mixed-effects growth curve model with first-order autoregressive variance-covariance for over time (a total of 35 time points) within each group and between-group variance. Differences were considered significant if p < 0.05.

DISCUSSION AND CONCLUSION
The major findings of this study include:

- In the pre-treatment group, the degree of increase in hypoxia in ISOM with any of the contrast agents was comparable.
- In the control group, only ioxaglate showed a similar increase in ISOM. Significant increase in R2* was observed in IM with all agents, except iothalamate.
- CO and OSOM generally showed the least change in both pre-treated and control groups.

These observations suggest that viscosity may play a more significant role in determining the renal hemodynamics. Whether the acute hemodynamic changes observed in this study lead to consequential deficits in renal function are not yet clear and currently under investigation. These observations may explain the ambivalence reported on the safety of ioxaglate [N Engl J Med 2003; 348:491-9, Kid Int (2006) 70, 1811–1817], probably related to population differences. Animal models may provide a more consistent platform to study the effects of radio-contrast media, as demonstrated in the present study.

ACKNOWLEDGEMENTS: Work supported in part by a grant from the National Institutes of Health, R01-DK-053221.