Assessment of AKI severity in an ischemia/reperfusion mouse model using T2* mapping: Comparison with Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule-1 (KIM1)

Jan Hentschel1, Lajos Marko2, Erdmann Seeliger2, Dominik N. Müller2,4, Andreas Pohlmann3, and Thoralf Niendorf2,5
1 Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine (MDC), Berlin, Germany, 2 Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück-Center, Berlin, Germany, 3 Institute for Vegetative Physiology, Charité Medical Faculty, Berlin, Germany, 4 Department of Experimental Medicine I, Nikolaus-Fiebig-Center for Molecular Medicine, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany

Introduction: It is known that renal medullary hyperperfusion and hypoxia play a pivotal role in acute kidney injury (AKI). A widely accepted hypothesis is that AKI of various origins share one common link in the pathophysiological chain of events that ultimately leads to AKI: imbalance between renal medullary oxygen delivery and oxygen demand. MRI is non-invasive and supports longitudinal studies. Hence it is an ideal candidate to examine renal tissue oxygenation and edema. Alterations in renal hemodynamics and oxygenation were previously shown by MRI using a renal ischemia/reperfusion injury (I-R) model in mice [1,2]. Neutrophil gelatinase associated lipocalin (NGAL) [3] and the Kidney Injury Molecule-1 (KIM1) [4] are new markers for acute kidney injury. This study examines the correlation between MRI and NGAL/KIM1 in mouse AKI including I/R injuries of different severity (mild to severe) to elucidate the link between changes in T2 and T2* and kidney physiology.

Materials and Methods: Animal models. We imaged 8 male C57BL6 mice (aged 12 weeks) in-vivo under isoflurane anesthesia (1.8-2.2% in 100% air). Four animals underwent mild ischemia/reperfusion (17.5 min). In another four animals severe ischemia/reperfusion (30 min) was induced. For all animals the same MRI protocol was used prior to onset of ischemia and 6h, 24h and 48h after ischemia/reperfusion. All procedures were performed under normothermic conditions. MR Imaging: Coronal T2-w images (RARE (factor 12), TR/TE = 3600ms / 16ms, FOV/matrix/res = (26.7x21)mm² / 256x202 / 0.104x0.104mm. T2 mapping: MSME, TR/TE/FA = 1000ms / 10-70ms (7 values), FOV/matrix/res = 26.7x21.0mm / 215x338 / 0.124x0.124mm) were acquired on a 9.4T Bruker BioSpec (Ettlingen, Germany) using a four-element mouse cardiac optimized surface coil array and respiratory triggering. For T2* mapping a multi-echo gradient echo, (TR/TE/FA = 100ms / 2.85-28.5ms (10 values) / 22°, FOV/matrix/res = 26.7x21.0mm / 215x169 / 0.12x0.12mm) was applied. Two slices of 0.65mm thickness were acquired in all cases. The NGAL and KIM1 mRNA expression was assessed by quantitative real-time polymerase chain reaction (qPCR), based on post mortem biopsies. Analysis. T2/T2* maps were derived from multi-echo spin-echo and multi-echo gradient echo data using MATLAB. Statistical analysis was conducted using SPSS20. Correlations were calculated based on mean values obtained from regions of interest in the renal cortex and medulla (Fig.3).

Results: T2 and T2*-weighted images showed strong changes in the cortex-medulla contrast (Fig. 1 and Fig. 2). A closer examination revealed a decrease in T2*/T2 for the medulla. T2 was found to be approximately 46.5±1.0 ms (mean±SEM) before I/R, 36.9±0.9 ms after 6h of I/R and 35.8±1.2ms after 48 h of I/R. In comparison an increase in T2*/T2 was observed for the cortex (Fig. 1 and Fig.2). Here, a T2 of approximately 34.0±0.5 ms was observed prior to I/R, 6 h after I/R T2 was 42.9±0.8 ms while a T2 46.8±0.8 ms was obtained after 48 h of I/R. Even for the mild I/R model significant T2*/T2 changes were observed, which were not as pronounced as those found for the severe I/R model. The analysis of the T2-values derived from the medulla and cortex of clipped kidneys showed a strong correlation with NGAL (r = -0.82, p < 0.05 and r = 0.85, p < 0.01 respectively) as demonstrated in Figure 3. A similarly strong correlation was observed between KIM1 and T2* derived from the medulla (r = -0.87, p < 0.01) but not between KIM1 and T2* derived from the cortex (r = 0.46) of clipped kidneys (Fig.3).

Discussion and Conclusions: Our results suggest that in-vivo parametric MRI (i.e. T2) correlates with the expression of NGAL and KIM1. This indicates that T2-mapping may be useful as a non-invasive marker for the characterization of pathophysiological changes in mouse models of AKI. A recognized limitation of this pilot study is the limited number of animals used for mild and severe AKI. Hence we anticipate to extend our explorations into T2-mapping of AKI to further underscore our preliminary conclusion that T2 could serve as a quantitative surrogate for the severity of kidney injury.


Acknowledgement: We thank the German Research Foundation (DFG) for financial support (FOR 1368).

Fig.1: Changes in T2 after I/R demonstrated in the form of color-coded T2-maps for severe AKI (top row) and mild AKI (bottom row) of the left kidney. The color-coded maps of the kidneys were superimposed to the T2-weighted images. The corresponding T2-weighted anatomical images (grey) are shown for the first and last time point, i.e. before I/R and 48h after I/R. The color scale used in the T2-maps ranged from 0 to 100ms (right).

Fig.2: T2-weighted image of a clipped kidney showing the ROI placement (left), the corresponding T2-map (center) and T2*-map (right).

Fig.3: T2 of the cortex (circles) and medulla (black triangles) of the clipped kidney (after 48h) vs. NGAL (left) and vs. KIM1 (right). Black lines represent the fitted linear regression curve.