Dynamic Radial Imaging of Inhaled 129Xe and 3He

Helen Marshall, Xiaojun Xu, Graham Norquay, Steve R Parnell, Juan Parra-Robles, and Jim M Wild

Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

Introduction: 129Xe ventilation and diffusion lung imaging [1, 2] show the clinical potential to replace 3He as a cheaper, more accessible alternative. Dynamic radial 3He imaging [3] has been shown to capture the dynamics of gas ventilation and can give information about lung motion and gas trapping [4]. In this study, 129Xe and 3He dynamic radial imaging of an inhalation and exhalation manoeuvre were compared in a healthy volunteer.

Methods: A healthy volunteer was scanned using a 3T whole body MRI system (Philips Intera, Best, Netherlands). A 2D time resolved radial sequence was used to image an inhalation and exhalation of gas over 20 seconds for both 129Xe and 3He gases. A coronal full lung projection was acquired with TR=14ms, FOV=384mm, matrix=96 and $\theta=5^\circ$. Consecutive radial k-space lines were rotated by the golden angle (111.246$^\circ$) to allow flexible spatial-temporal reconstruction of the data [5] with sliding window reconstruction.

129Xe imaging: 129Xe was polarised to ~14% [6] with a home-built regulatory-approved spin exchange polariser [7]. The volunteer was positioned in a 129Xe transmit-receive vest coil (CMRS) and inhaled 400ml of xenon mixed with 600ml of N$_2$. A receive bandwidth of 8kHz and a TE of 7ms were used.

3He imaging: 3He was polarised to ~25% with a Helispin polariser (GE). The volunteer was positioned in a 3He transmit-receive birdcage coil (Rapid Biomedical) and inhaled 250ml of hyperpolarised 3He mixed with 750ml of N$_2$. Due to the higher diffusivity of 3He, a receive bandwidth of 48kHz was used to limit signal loss from diffusion during the readout (TE=1.7ms).

Results and Discussion: Dynamic radial images of 129Xe and 3He from the same healthy volunteer are shown in figure 1. Comparable lung movement and gas filling is seen in both sets of images. Despite the lower SNR of the 129Xe images they still convey the necessary information, and even show a small ventilation defect in the volunteer's mid-right lung which becomes apparent in the last two frames of exhalation.

Figure 1 129Xe (top) and 3He (bottom) dynamic radial images from the same healthy volunteer

![Figure 1](image1.png)

Figure 2 shows the 129Xe and 3He signal behaviour as a function of time for a region of interest in the right upper lobe. (a) shows mean signal ± standard deviation and (b) shows signal normalised to the peak signal. The rate of signal increase at the beginning of the inhalation was greater for 3He than for 129Xe. This may be due to the fact that 129Xe is denser which will affect flow dynamics and requires more inspiratory effort to inhale through the 5mm tubing of the Tedlar bag. The rate of exhalation was similar for both gases.

![Figure 2](image2.png)

Conclusions: 129Xe provides useful information about lung motion and filling similar to that provided by 3He in dynamic radial imaging. Future studies will focus on the regional kinetics and gravitational flow effects of these two gases of different densities.

Acknowledgements: UK EPSRC for funding, GE for polariser support and King's College London NIHR BRC for loan of the 3He birdcage coil.