A Local Static Magnetic Field Confines Implanted Stem Cells in Targeted Regions and Improves Their Therapeutic Efficacy for Heart Failure

Jian Wang1, Fei Wang2, Bo Xiang2, Jixian Deng3, Chris Stillwell2, Hung-Yu Lin4, Marco Gruwel2, Chun-Te Ko2, Boguslaw Tomanek2, Mike Sowa2, Tarek Kashour2, Darren Freed2, Rakesh Arora2, and Ganghong Tian4
1National Research Council, Winnipeg, Manitoba, Canada, 2National Research Council

Introduction
Cell therapy holds a great promise for curing various degenerative diseases, including congestive heart failure (CHF). However, both animal and human studies showed very marginal benefits of cell therapy. Lack of strategies to confine implanted stem cells in a targeted region may underlie the limited efficacy observed in cell therapy. This study was to determine whether an externally applied static magnetic field (SMF) increase the retention of superparamagnetic iron oxide (SPIO)-labeled cells in a targeted organ and then improve efficacy of cell therapy.

Materials and Methods
Adipose-derived stem cells (ASC) were isolated from subcutaneous adipose tissue of male rats. The ASC were labeled with SPIO. Effects of SMF on proliferation, trans-differentiation and DNA integrity of the SPIO-labeled ASC (ASCSPIO) were determined after one week of exposure of the ASCSPIO to 0.5 Tesla SMF. CHF was induced on 26 female inbred Lewis rats by occlusion of the left anterior descending (LAD) coronary artery. Immediately after the LAD occlusion, the rats were randomly divided into three groups. Rats in group 1 (n = 5) were subjected to four intramyocardial injections of cell-culture medium (CCM, ~125 μL/injection) into the infarct rim. Animals in group 2 (N = 12) were subjected to 4 intramyocardial injections of the ASCSPIO (~1.25 x 10^5/injection). The animals in group 3 were subjected to 4 injections of same number of ASCSPIO and one-week subcutaneous implantation of a 1.0 cm diameter magnetic disc on the left chest wall. The magnet generated a ~0.1 Tesla SMF on the surface of the rat hearts. During four weeks of postoperative recovery, rat heart function was monitored in MRI. At end of the recovery, hearts were excised and the ASCSPIO in the hearts were quantified using real-time polymerase chain reaction (RT-PCR).

Results
In our ex vivo cell study, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) assay showed that the level of formazan in ASCSPIO subjected to a 0.5 Tesla SMF (98 ± 13%) was comparable to that of control ASCSPIO (set as 100%) following one week of culture with an identical cell number at the beginning. This demonstrated that a SMF at 0.5 Tesla had no negative impacts on proliferation of the ASCSPIO. In addition, it was found that both control ASCSPIO and those subjected to one week of a 0.5T SMF had similar expressions of the markers specific to adipogenic, osteogenic, and chondrogenic differentiations following respective inductions. This indicates that a 0.5T SMF does not affect the differentiation potential of ASCSPIO. In the Comet assay, we did not observe any ASCSPIO with evident DNA fragmentation after one week of exposure to 0.5T SMF. In our in vivo study, it was found that the CHF hearts subjected to both ASCSPIO and SMF (Group 3) contained significantly more ASCSPIO (3.6 x 10^5 ± 1.0 x 10^4 ASCSPIO/heart) than the hearts treated only with ASCSPIO (Group 2, 1.9 x 10^5 ± 1.2 x 10^4 ASCSPIO/heart) (Figure 1). As a result, cine MRI showed that left ventricular ejection fraction (LVEF) was significantly greater in group 3 (58 ± 5%) than in group 2 (49 ± 6%) (Figure 2). LVEF of the two groups were considerably greater than that of the CHF hearts treated with CCM (group 1, LVEF of 32 ± 4%) (Figure 2).

Discussion and Conclusion
Our study demonstrates that one week of exposure to SMF (0.5 Tesla) does not affect the proliferation, differentiation and DNA integrity of ASCSPIO. Use of a SMF even at 0.1 Tesla significantly enhances confinement of ASCSPIO in the infarct hearts. Consequently, the infarct hearts treated with ASCSPIO and SMF had a significantly improved recovery of LVEF compared to those treated only with ASCSPIO. Therefore, we conclude that a local SMF can significantly improve therapeutic efficacy of stem cells.