A New Approach for Time-Resolved Phase Contrast MRA
Jelena Bock1, Hans Burkhardt2, and Michael Markl3
1Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany, 2Computer Science, University of Freiburg, Freiburg, Germany, 3Radiology and Biomedical Engineering, Northwestern University, Chicago, United States

Introduction: MR angiography (MRA) is widely applied in the clinical routine to analyze vascular malformations. While most applications are based on contrast enhanced MRA, Phase Contrast (PC)-MRA has proven to be a useful alternative [1,2]. However, most approaches provide only the time-averaged 3D lumen and thus static 3D vessel segmentation, which does not account for temporal changes such as the substantial motion of the thoracic aorta during the cardiac cycle. It was the purpose of the study to extract time-resolved 3D PC-MR angiography from ECG gated PC-MRI data with 3-directional velocity encoding using fully automatic feature based fuzzy clustering for dynamic aortic lumen segmentation. This approach was applied and evaluated in 11 healthy subjects and 12 patients with different cardiovascular pathologies.

Methods - Data Analysis: Fuzzy clustering algorithms (here fuzzy c-means, FCM) classify the image by grouping similar data points in the feature space into clusters [3]. For the calculation of aortic PC-MRA, the aim was to group voxels of the time-resolved 3D PC volume into 3 clusters labeled as noise, static tissue and flow lumen for each time frame. To yield more homogeneous regions and to remove outliers, we modified the FCM algorithm by incorporating spatio-temporal information into the membership assignment function and thus allowing the spatio-temporal neighborhood (1 voxel in each +/- direction) of a voxel to influence its labeling. To correct for signal variations related to the multi-element coil used for data acquisition, a non-uniformity correction was performed on the magnitude data using a technique described in [4]. To account for possible velocity aliasing all calculations were performed using velocity vector magnitude (speed). For each voxel, four features were chosen for FCM: 1) sum of squares PC-MRA [2], 2) pseudo complex difference PC-MRA [5], 3) non-uniformity corrected magnitude and 4) mean value of the haar wavelet coefficients (for 2 scaling values) of the velocity-time course in a temporal neighborhood of 5 voxels. A spatio-temporal FCM algorithm was applied until the maximal change in values representing cluster membership was less than 0.2%. Subsequently, each voxel was assigned to a specific cluster for which the membership was maximal. Furthermore to improve the segmentation of diastolic time frames, voxels in the peak systolic time frames were labeled according to their distance from the vessel boundary (here voxels with distance > 3 voxels) were copied to all diastolic time frames. Additionally, a 3D holes closing algorithm was applied for each time frame. To enable the calculation of hemodynamic parameters (flow, mean velocities, etc.) in the aorta only, automatic removal of the pulmonary system was performed based on vector field homogeneity [6] and a subsequently applied fluid fill algorithm. Voxels classified by FCM algorithm as static tissue were used for eddy correction of the velocity data [7]. The data processing workflow is illustrated in fig. 1.

Methods - MR Imaging: 11 young healthy subjects (mean age 24.6 years, 4 females) and 12 patients with different cardiovascular pathologies (mean age 29.7 years, 5 females; 8 patients with coarctation of the aorta, 2 with aortic aneurysm in DAo, displayed at 5 years of age, 1 with bicuspid aortic valve and 1 with aortic insufficiency) were included in our study after approval by the local ethic committee and written informed consent. All patients received contrast agent. Data were acquired on 1.5T and 3T systems (Avanto and Trio, Siemens, Germany). Time-resolved and breath-hold 3D PC-MRA acquisitions were performed in the ascending aorta at the level of the lower edge of the pulmonary artery (AAo), 2 proximal to the first branch of the supra-aortic vessels (FB), and 3 at the descending aorta at the same height as plane 1 (DAo) as shown in figure 2. As reference standard, the aortic lumen contours in all 3 planes were segmented manually for each time frame in the cardiac cycle. Area, mean velocity and flow were calculated for manual (reference standard), time-resolved and time-averaged (static) PC-MRA. Bland-Altman analysis was performed (Tab.1) and flow and area time-curves were plotted for each position (Fig.3, illustration for AAo position only).

Results: The time-resolved 3D PC-MR angiography in Figure 2 shows good vessel depiction in peak systolic time frames (180-340 ms). During early systole (100 ms) and in diastole (402 ms), the vessel boundaries especially in the distal descending aorta are not completely depicted. Similar results were obtained for all other volunteers and patients. Different pathologies had no influence on the segmentation quality. In 10 of 12 patients, the automatic removal of the pulmonary system was incomplete; in healthy subjects, the removal was incomplete for 3 of 11 data sets. Bland-Altman analysis (Tab.1) revealed that time-resolved PC-MRA in most cases underestimated hemodynamic parameters compared to manual segmentation approach; but in some cases (AAo in position), time-resolved PC-MRA overestimated values probably due to incomplete removal of pulmonary system and thus incorporating values from other vessels into the calculations. Time-resolved flow curves (Fig. 3) derived with automatic segmentation were underestimated in most cases compared to reference standard (healthy/patients: 7.5 ± 5.1% / -0.5 ± 3.8% difference in AAo, 8.3 ± 5.6% / 3.5 ± 2.4% difference in FB, 9.5 ± 4.3% / 4.3 ± 4.0% difference in DAo). Time-resolved area were underestimated in healthy subjects (7.8 ± 5.2% difference in AAo, 10.0 ± 4.0% in FB and 14.3 ± 2.5% in DAo). In patients, areas in AAo (±5.5 ± 4.5 % difference) and in FB (±0.7 ± 2.2% were overestimated and underestimated in DAo (6.9 ± 3.3%) compared to manual segmentation.

Discussion and Outlook: Preliminary results indicate the potential of FCM for time-resolved 3D vessel segmentation. Limitations of the current implementation are related to low velocity in early systole and in diastole, which resulted in incomplete depiction of vessel boundaries during these time frames. Thus, time-resolved PC-MRA tends to underestimate hemodynamic parameters. But in comparison to the rigid segmentation, flow could be determined more accurately (s.Fig 3).

Advantages of the presented approach are that time-resolved segmentation follows the general motion of the aorta during the cardiac cycle. As a result, the mean values of the noisy values from outside the vessel is reduced to a rigid segmentation.

References:
[3] Chuang K.S., Comp Med Imaging Graph 2006; 30