Abdominal Aortic Aneurysm Causes Hemodynamic Abnormalities in the Iliac Arteries

Mamoru Takahashi1, Yasuo Takehara2, Haruo Isoda3, Naoki Ooishi3, Masaki Terada4, Tetsuya Wakedaya5, Atsushi Nozaki6, Toshiyuki Shimizu6, Marcus Alley7, Naoki Uno8, Norihiko Siiya9, Norihiro Tooyama4, Katsutoshi Ichijo9, and Harumi Sakahara2

1Seirei Mikatahara General Hospital, 2Hamamatsu, Shizuoka, Japan, 3Hamamatsu University School of Medicine, 4Nagoya University School of Health Sciences, 5Iwata City Hospital, 6GE Healthcare Japan, 7R’s Tech Co, 8Stanford University School of Medicine, 9Seirei Mikatahara General Hospital

INTRODUCTION:
Iliac artery aneurysms (IAAs) co-exist with abdominal aortic aneurysms (AAAs) in 10–20% of cases, whereas, isolated IIAs are rare, accounting for only 2% of all aorto-iliac aneurysms (1). Low Wall Shear Stress (WSS) and high oscillatory shear index (OSI) have been postulated to lead arterial wall to atherosclerosis (2, 3). We hypothesized that hemodynamic abnormality of the iliac arteries, which are initiated by AAAs, is one factor in the progress of IAA's at the most initial stage.

PURPOSE:
The aim of this study was to assess whether the presence of AAAs change the hemodynamics of the downstream iliac arteries with use of recently innovated time-resolved 3D phase contrast (PC) MRI (4D-Flow) that allows measurements of the blood flow velocity vectors within the entire geometry within the vasculatures throughout the cardiac cycle in-vivo (4).

PATIENTS AND METHODS:
Written informed consent was provided in all cases for this IRB approved study. Eight patients (six males and two females; 66-85 years), who had AAA but whose iliac arteries were not dilated (<15mm), were included (Group A). For group B with undilated abdominal aorta and common iliac arteries, age matched eight patients, were included. MR imaging: All examinations were performed on 1.5T MR scanner (Signa TwinSpeed with Excite). Gadolinium enhanced 3D MRA was performed prior to the 4D flow. 4D Flow is based on a SPGR sequence encoding flow velocities in three orthogonal directions. The parameters used were TR/TE/FA/NEX of 4.5-5.0/1.6-2.0/15/1, FOV of 30-34 cm, Matrix of 224-256x160-224, 2-3 mm thickness, 12 phases during one cardiac cycle. The value of velocity encoding was determined by the flow velocimetry performed with axial 2D phase contrast image. Acquired data were post processed with Osira (flow analysis software).

IMAGE ANALYSIS
Mean WSSs in each cardiac cycle of the common iliac arteries were calculated and the average value (Ave WSS), the maximum value (Max WSS), the minimum value (Min WSS) and OSIs were calculated for each cases. Hemodynamic abnormalities were visually assessed using obtained streamlines in each cardiac phase.

RESULT&DISCUSSION
All WSSs of Group A were significantly lower than those of Group B. Especially in Max WSS, which was during systolic phase, the difference between two groups were most conspicuous (Chart 1). Vortex and/or turbulent flows generated in AAAs affected the downstream iliac arteries, and thereby, reduced WSSs. This phenomenon was most prominent in the systolic phase (Fig 1). Even in Group B there were arteriosclerotic changes (i.e. tortuosity and irregularity of the artery wall) to some extent, and they reduced focal WSSs. However, the blood flow was mostly laminar and overall WSSs were relatively high (Fig 2). The low WSSs in the common iliac arteries in AAA patients may ultimately lead to co-existing iliac artery aneurysms. Conversely, this can explain that isolated iliac artery aneurism is rare. Interestingly, OSIs of Group A and B showed no significant difference; 0.11(+/- 0.07) and 0.1(+/- 0.07) respectively. This may be due to its peculiar location (i.e. downstream to the bifurcation of aorta), which is prone to vortex or turbulent flow.

CONCLUSION
AAAs disturbs laminar flow of the iliac arteries and reduces their WSSs, which may suggest that the presence of AAAs may play an important role in the ultimate induction of the iliac artery aneurysm.

REFERENCE