Comparison of Cardiac Stress MR Perfusion Imaging With and Without Non-Rigid Motion Correction

Pamela K. Woodard1, Matthew R. Lyons2, Sven Zuehdslorff2, Gary McNeal1, Agus Priatna3, Cylen Javidan-Nejad1, Ibrahim M. Saeed1, Hui Xue4, Christopher Gielni2, and Robert J. Gropler1

1Mallinckrodt Institute of Radiology, Washington University School of Medicine, Cleveland, Ohio, United States, 2Cardiology, Case Western Reserve University, Cleveland, Ohio, United States, 3Siemens Medical Solutions, Erlangen, Germany, 4Siemens Medical Systems, Malvern, PA, United States, 5Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States, 6Cardiology, Saint Luke's Hospital, Kansas City, MO, United States, 7Siemens Corporate Research, Princeton, New Jersey, United States

Title: Comparison of Cardiac Stress MR Perfusion Imaging With and Without Non-Rigid Motion Correction

Objective: To compare the visibility of perfusion defects on stress myocardial perfusion imaging performed with and without non-rigid motion correction (MOCO).

Background: A framework for non-rigid multimodal registration has been created and applied to compensate for distortions between EPI images and anatomical MRI volumes [1]. Initially applied in brain MR imaging, this technique has now been applied to a cardiac perfusion sequence to be used with pharmacologic stress imaging. The implemented algorithm uses a key frame of the dynamic data set during the first pass of contrast agent as the reference frame. Subsequently, all other frames are registered using a nonrigid registration algorithm [2].

Method: 22 patients (15 M, average age 60 yrs, SD 9.6) with a reversible myocardial perfusion defect on SPECT-MPI underwent a cardiac perfusion MRI within 7 days of the SPECT-MPI. The first-pass stress cardiac MR perfusion examination was acquired on a 1.5T MAGNETOM Avanto (Siemens Healthcare, Erlangen, Germany) using a six element body phased array coil and a six to nine element spine matrix coil. MR exams consisted of short and long axis cine steady state free precession (SSFP) imaging, SR prepared Tl cardiac first pass perfusion (TI=100ms, TE=1.05ms, TR = 2.2ms, 650 Hz/px, TPAT 2, 160 base resolution) with matched slice positions and delayed contrast-enhanced (DCE) T1 GRE imaging. First-pass perfusion images were obtained 30 seconds after regadenoson 400 micrograms administered in a single IV bolus and during power injection of 0.075 mmol/Kg of gadobenate dimeglumine at 5 mL/sec IV followed by normal saline flush. Perfusion images were reconstructed without and with MOCO. DCE imaging was obtained 10 minutes after injection of an additional 0.025 mmol/Kg of contrast agent. In separate sessions a physician with cardiac MRI expertise (16 years) graded the images for the presence or absence of a perfusion defect in each myocardial segment using the American Heart Association 17-segment model[3]. Correlation for hypoperfusion at the base, mid and apex of the left ventricle was assessed using a one-sided McNemar’s test.

Results: In total, there were 39 defects identified during stress perfusion imaging with MOCO and 28 on the non-MOCO stress perfusion imaging, with more hypoperfusion identified on MOCO imaging in comparison to non-MOCO. Differences between MOCO and non-MOCO imaging were significant only for defects in the mid left ventricle (LV) (P = .03), with base (P = .06) approaching significance. Differences at the apex were less significant (P=.25) (table).

Discussion: More defects were visible on MOCO cardiac MR perfusion imaging than non-MOCO. Differences were significant for defects present in the mid LV, and approached significance at the LV base. Of note, although SPECT-MPI imaging was performed, this is not a true reference standard, in that as many as 5-10% of standard SPECT-MPI imaging may have attenuation correction artifacts attributed to perfusion defect. Anecdotally, perfusion defects identified on non-MOCO imaging appeared smaller in comparison to their MOCO counterparts and often covered fewer portions of adjacent myocardial segments.

Conclusion: More myocardial MR perfusion defects are identified on MOCO MR perfusion imaging in comparison to non-MOCO imaging.


TABLE: Correlation of myocardial perfusion defects on MOCO and non-MOCO imaging.

<table>
<thead>
<tr>
<th></th>
<th>MOCO</th>
<th>Non-MOCO</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV Base</td>
<td>11</td>
<td>7</td>
<td>.06</td>
</tr>
<tr>
<td>LV Mid</td>
<td>15</td>
<td>10</td>
<td>.03</td>
</tr>
<tr>
<td>LV Apex</td>
<td>13</td>
<td>11</td>
<td>.25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>39</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE: Anteroseptal hypoperfusion, apical LV in (A) motion-corrected (MOCO) and (B) non-MOCO stress perfusion imaging. Corresponding delayed enhanced image (PSIR) shows no infarction, indicating that this region is ischemia (C).