Water Diffusional Kurtosis Imaging (DKI) Analysis of Ischemic Stroke Model in Juvenile Rats
Renaud NICOLAS1, Gérard RAFFARD2, Stéphane SANCHEZ1, Eric PETERSON2, Florent AUBRY1, Isabelle BERRY1, Pierre CELSIS1, and Bassem HIBA1
1Imagerie cérébrale et handicaps neurologiques; UMR 825, INSERM, F-31059 Toulouse, France. 2Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS, F-33076 Bordeaux, France.

INTRODUCTION : Diffusional Kurtosis Imaging (DKI) is a clinically-accessible, NMR model of non-gaussian properties of water diffusion in tissue (considering b-factors up to 3000 s/mm²) [1]. Although based on a different hypothesis, the Statistical Model of Diffusion Imaging (SMDI) [2,3] is equivalent to the DKI model [1,2,3]. Although ischemic stroke has been studied extensively with gaussian diffusion models, it has only recently been shown in humans that the apparent kurtosis excess (Kapp) test, that depend on the diffusion coefficientsdispersion, increases in ischemic regions [5]. The excess Kurtosis of an unique water pool in a heterogeneous media is expected to be sensitive to both water restriction effects and exchange when varying diffusion time τ[1, 3].

MATERIALS AND METHODS : Stroke model : 7 juvenile rats (7 days, ~20 g) were submitted to Middle Cerebral Artery Occlusion (MCAO) followed by a 2 h incubation in 8 % O₂, 92 % N₂ at 31-33°C. NMR acquisition : DWI-EPI images (357 μm x 312 μm, 6 averages, 10 slices of 1 mm thick, TE/TR=68/3200 ms) with diffusion gradients applied in R,S,P directions were acquired on a 4.7 T Bruker small animal scanner. A constant diffusion time (CT) Stejskal-Tanner MRI sequence was used with b-factors of 0, 500, 1000, 1500, 2000, 2500 s/mm² with a diffusion gradient duration 6–4ms. Three different experiments were performed using gradient separation Δ=30,50,50 ms. Post-Processing : After registration and eddy-current correction, the direction independent S/S₀ pixel-by-pixel signal decay was interpolated to b-factors of 100, 200, 500, 750, 1000, 1500, 2000, and 2500 s²/mm². After that, the S/S₀ images were non-linearly fitted by the medium b-values range simplified form of SMDI : S/S₀=exp(-b.Dapp²/3(b.R²σ²)) [4,5]. Kapp was computed as Kapp=3(σ²/Dapp²) [3,4,5]. Statistical Analysis : Cortical ROIs of healthy and ischemic areas, traced on Dapp maps, were used as masks allowing the determination of Dapp and Kapp pixel-averaged spatial mean values, variances and histogram profiles. A non-parametric Kruskal-Wallis (rank sum) test, adapted for few-subjects studies, was used to assess the statistical significance of the differences between ischemic and healthy tissue as well as the effects of diffusion time variations on pixel-averaged spatial mean, designed as <Dapp> and <Kapp>.

RESULTS : For all diffusion gradient separation time (Δ=30,50,50 ms), the ischemic cortex is characterized by a reduction of <Dapp>(P=0.001745) and a rise of <Kapp>(P=0.001745), when compared to healthy contralateral tissue, as illustrated by Fig. 1 and 2. Table 1 show the <Dapp> and <Kapp> values averaged for all rats studied. A reduction of 40 % for <Dapp> and a 55 % rise for <Kapp> were observed in the ischemic region compared to the healthy contralateral area. As shown in Fig 2., ischemic Kapp values are more dispersed than normoxic Kapp ischemic Dapp or normoxic Dapp values. If Dapp histograms in healthy versus diseased tissue were well separated (Fig 2, top), there is an overflow of the measured Kapp values (Fig 2, bottom). No statistically significant differences were found (in both healthy and ischemic cortex) among <Dapp> and <Kapp> values obtained with the three different diffusion times.

![Graph](image)

Table 1. Pixel-averaged intensity <Dapp> and <Kapp> values (given as mean ± total standard deviation) averaged over the 7 rats. Standard deviation include intra- and inter-subject dispersion around pixel mean value and subject mean value.

DISCUSSION : For medium b-values, DKI and SMDI are equivalents models describing the non-gaussian diffusion of an unique water pool. Extending the fit to a complete SMDI model would possibly lead to the usefulness of a DKI-type model for b-values higher than 3000 s²/mm² [2]. High Kapp are representative of strong dispersion of mean diffusivities, reflecting the structural complexity of tissue [3]. As observed in humans [5], Kapp is as sensitive as Dapp (or equivalently, clinical ADC) in delineating the extent of ischemic region in the cortex. Kapp also shows a spatial heterogeneity in the lesion compared to Dapp. In this preliminary study performed in a limited number of subjects as well as with a limited diffusion times range, spatial averages <Dapp> and <Kapp> for healthy and ischemic parenchyma do not present any significant changes when varying diffusion times. Histological assessment of tissues properties in the stroke lesion is in progress and would confirm if Kapp maps are able to differentiate internal tissue characteristics in the stroke lesion.