In-vivo imaging of hind paws micro vessel damage in the STZ-induced diabetes rat using dynamic contrast enhanced-MRI
Shigeyoshi Saito1, Yuto Kashiwagi2, Ryota Ogihara1, Akie Sugiura1, Takashi Konishi1, Shin Takamatsu1, Yuuki Takeuchi1, Mana Tsugeno1, Kohji Abe2, and Kenya Murase1

1Department of Medical Physics and Engineering, Osaka University, Suita, Osaka, Japan, 2Innovative Drug Discovery Research Laboratories, Shionogi & Co., Ltd, Toyonaka, Osaka, Japan

INTRODUCTION
Hyperglycemia causes damage in the blood vessels and nerves of the body, which in turn develop into the major complications of diabetes [1]. Peripheral neuropathy [2] and peripheral circulatory disorder [3] may induce diabetic foot lesions. Our purpose of this study was to assess peripheral micro-vessel damage in streptozotocin (STZ)-induced diabetic rats by using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and histological experiment.

MATERIALS AND METHODS
A rat diabetes model was produced by intravenous injection of STZ. Diabetes was induced by injecting STZ (65 mg/kg, Sigma Chemical, St. Louis, MO) into the tail vein after overnight fasting. Normal control rats were injected with the same volume of saline (1 mL/kg). Diabetic rats were treated with either saline or insulin during 4 weeks. The DCE-MRI studies were performed with an MRI system for animal experiments equipped with a 1.5-tesla permanent magnet (MRmini, DS Pharma Biomedical Co., Ltd., Osaka, Japan). The DCE-MRI data were acquired using 3D fast low angle shot (FLASH) sequence with the following parameters: a repetition time (TR) of 50 ms, an echo time (TE) of 6.7 ms, an excitation pulse flip angle (FA) of 36 degrees, a field of view (FOV) of 60.0 × 60.0 mm², a matrix size of 256 × 128, and a number of excitations (NEX) of 1. Gd-DTPA (0.1 mmol/kg, Magnevist, Bayer Schering Pharma, Osaka, Japan) was manually injected into the tail vein via a 26-gauge indwelling needle connected to a 50-cm extension tube and 1.0-mL syringe. Hind paw tissue perfusion was measured by signal intensity (SI) enhancement after Gd-DTPA injection in DCE-MRI study and quantified using the area under the SI-time curve (AUC) and the max values of SI (Smax) at 4 weeks after STZ injection. Peripheral micro-vessel was also assessed CD-31 staining as a marker of tissue damage.

RESULTS and DISCUSSION

Fig 1. Blood glucose level: blood glucose level for three groups at 4 weeks after saline or STZ injection. The blood glucose level of the diabetic rats was significantly elevated compared with that of the control rats at 4 weeks (p<0.01).

Fig 2. Typical images of AUC and Smax: (A) – (C) the AUC maps in the whole right hind paw for each experiment groups. (D) – (F) the Smax maps in the whole right hind paw for each experiment groups. The AUC values of the diabetic rats showed a significant reduction (B and E, p < 0.001) compared with that of the normal control rats, and significant improvement was observed in the insulin-treated diabetic rats (C and F).

Fig 3.CD-31 staining: CD-31 staining demonstrated the endothelial cell structure. The density of CD-31-positive cells for the STZ-induced diabetic rats were significantly smaller than that of the control and insulin treatment animals (B and C).

DCE-MRI perfusion measurement was performed to investigate and characterize peripheral tissue perfusion disorder and to assess the effect of insulin on peripheral tissue perfusion disorder [Fig2]. In the diabetic state, the endothelial tissue of blood vessels is exposed to chronic hyperglycemia, which induces endothelial dysfunction leading to diabetic angiopathy [1]. We can observe the micro vessel damage using the CD-31 staining [Fig3]. Previous studies have shown that endothelial dysfunction of mesenteric microvessels [4] or reduction of hindlimbs blood flow [5] was observed after 2 weeks of STZ-induced diabetes, which agrees with our results that 4 weeks of a diabetes state leads to deterioration of peripheral tissue perfusion and micro-vessel damage.

CONCLUSION
In conclusion, this study demonstrated that the DCE-MRI is useful for the assessment of STZ-induced diabetic rat peripheral circulatory disorder.

REFERENCES