Improving mobile protein level detection using mDIXON-based APT-MRI in bone marrow edema
Guang Jia1, Wenbo Wei2, Xiangyu Yang1, David Flanagan2, Jochen Keupp1, Jinyuan Zhou2, and Michael V. Knopp1
1Department of Radiology, The Ohio State University, Columbus, OH, United States, 2Department of Orthopedics, The Ohio State University, Columbus, OH, United States, 3Innovative Technologies, Research Laboratories, Philips Research Europe, Hamburg, Germany, 4Department of Radiology, Johns Hopkins University, Baltimore, MD, United States

Introduction
Amide-proton-transfer MRI (APT-MRI) as a new protein-based molecular imaging technique has recently used in knee joint imaging (1), where bone marrow edema may have high mobile protein levels due to inflammation (2). APT-MRI signal is normally quantified using the magnetization transfer ratio (MTR)-asymmetry at 3.5 ppm around the water resonance, namely, MTR$_{\text{asym}}$(3.5ppm). However, it is shown that the fatty bone marrow results in an extra magnetization transfer (MT) signal at -3.5 ppm, deteriorating the calculation of the APT signal at 3.5 ppm. Further, many regular fat suppression techniques, when used, may interfere with the the saturation pre-pulse in APT-MRI, which may result in an abnormally high signal at -3.5 ppm. A multiple gradient-echo DIXON (mDIXON) technique has been previously applied to water and fat separation without using any pre-pulse (3), which hitherto has not been used in APT-MRI of fat-containing tissue. This study is to evaluate the feasibility of applying mDIXON-based APT-MRI to a mobile protein level assessment in the bone marrow edema.

Material and methods
21 patients with knee injuries were imaged on a 3 Tesla MR system (Achieva, Philips Healthcare, Cleveland, OH) using an 8-channel knee phased array coil. Standard diagnostic images were used to identify bone marrow edema (BME). Both fat-suppressed APT-MRI and mDIXON-based APT-MRI were acquired with the center slices covering the BME mid-section.

Fat-suppressed APT-MRI was based on a single-slice single-shot fast spin-echo (TSE) sequence with selective fat suppression (TSE-SPIR). The saturation pre-pulse was composed of a train of sixteen 1800° block pulses, each with a pulse length of 29 ms and saturation amplitude of 172 Hz (4.1 µT). MT-spectrum was acquired using 33 saturation pre-pulse frequency offsets (-8 to 8 ppm, interval 0.5 ppm). S_0 was acquired using TSE image without saturation pre-pulse. The acquisition time was 3 min. B_0 field was acquired using a dual-echo mDIXON-2D-FFE sequence (TE1/TE2 = 1.5/4.1 ms) (4).

New mDIXON-based APT-MRI was based on a single-echo 3D-FFE sequence (TE1/TE2 = 1.72/4.6 ms). Water-only, fat-only, in-phase, out-of-phase images as well as Dixon-type B_0 maps were extracted from the dual-echo mDIXON images. The same duration and power of the saturation pre-pulse were implemented. MT-spectrum was defined by six saturation pre-pulse frequency offsets. S_0 was acquired using 3D-FFE image without saturation pre-pulse. The acquisition time was 5 min. After B_0 field inhomogeneity corrections to the MT-spectrum, the MTR$_{\text{asym}}$(3.5ppm) signal was calculated to estimate the mobile protein levels in bone marrow edema with the pixel-wised map display and ROI-based analysis.

Results
Eight imaged knees were shown with bone marrow edema (6 in femur and 2 in tibia). On fat-suppressed APT-MRI images, the abnormally high MTR$_{\text{asym}}$(3.5ppm) signals (artifact) appeared in the border area close to bone marrow and fat tissue (Figure 1). This artifact was removed by mDIXON-based APT-MRI, by which the MTR$_{\text{asym}}$(3.5ppm) map of BME shows elevated mobile protein levels only in the area close to the bone surface (Figure 2). The deeper BME area did not exhibit MRI-detectable mobile protein levels. The average MTR$_{\text{asym}}$(3.5ppm) in the knee BME ROIs was 4.8% ± 5.5%.

Discussion
We demonstrate that the mDIXON-based APT-MRI technique can substantially improve non-invasive assessment of mobile protein levels in bone marrow edema. The proposed technique has the potential to be applicable to fat-containing tissue tumors, such as osteosarcoma, breast cancer, and fatty liver lesion.

References