Using the ionic x-ray contrast agent Hexabrix as a specific marker for cartilage glycosaminoglycan (GAG) content via chemical exchange saturation transfer imaging at 3 Tesla

Benjamin Schmitt1, Toshiyuki Shiomi2, Siegfried Trauttmansdorff3, Monika Egerbacher3, and Pavol Szomolanyi4

1Centre for High-Field MR, Medical University of Vienna, Vienna, Austria, 2Osaka University Graduate School of Medicine, 3Medical University of Vienna, 4University of Veterinary Medicine Vienna

Introduction:
Glycosaminoglycans (GAG) are elementary components of cartilage tissue, and their loss is thought to be an early biomarker of osteoarthritis. The fixed charge density (FCD) of GAG is used for contrast agent based assessment of cartilage GAG content, such as in delayed gadolinium enhanced MRI of cartilage (dGEMRIC) [1]. The FCD can also be exploited for X-ray-based arthrography using ionic iodine-based contrast agents such as, e.g., Hexabrix® [2], which is a mixture of 39.3 % w/v ioxaglate meglumine and 19.6 % w/v ioxaglate sodium. Both molecules contain 4 amide protons and 2 hydroxyl protons, which may be subject to chemical exchange with surrounding bulk water molecules. This initial study was performed to evaluate if Hexabrix® can be used as a chemical exchange saturation transfer (CEST) agent [3] to assess cartilage GAG content with MRI at 3 Tesla.

Materials & Methods:
Hexabrix® (Guerbet, France) 320 was used for MR experiments, and fresh (not previously frozen) porcine knees obtained from a local butcher were used as in-vitro cartilage samples. In a first experiment, the cartilage knees were divided into pieces, which were placed into plastic tubes and immersed in saline solutions with different concentrations (100 %, 50 %, 25 % and one control) of Hexabrix® (Hex) for 24 h. In the second experiment, cartilage samples were degraded enzymatically for 1.5 h (2 samples) and 3 h (2 samples) using trypsin. After degradation, 2 samples were placed in tubes and immersed in Hex solutions for 24 h. MR examinations were performed on a clinical 3 T System (Siemens Healthcare, Germany) using a standard 8-channel knee coil (InVivo, USA). CEST imaging was performed using 3D RF-spoiled gradient-echo (GRE) sequence with the following imaging parameters:

- $T_2=3.88$ ms, $T_1=10.39$ ms, 0.39x0.39x2.40 mm³, matrix=144x256x20, scan time 1 h 58 min (4 NEX). Selective RF presaturation was achieved using a series of 3 Gaussian RF-pulses with pulse duration T_p =100 ms, interpulse delay τ_d =10 ms, and $B_{1,\text{LOWE}}=2 \mu$T.

Collection of CEST reference and control spectra was performed using 3D RF-spoiled gradient-echo (GRE) sequence with the following imaging parameters:

- $T_2=3.88$ ms, $T_1=10.39$ ms, 0.39x0.39x2.40 mm³, matrix=144x256x20, scan time 1 h 58 min (4 NEX). Selective RF presaturation was achieved using a series of 3 Gaussian RF-pulses with pulse duration T_p =100 ms, interpulse delay τ_d =10 ms, and $B_{1,\text{LOWE}}=2 \mu$T.

The saturation module was repeated every 48 phase encoding steps. The first image series was recorded as a reference without RF presaturation (S_0) and 27 series were acquired with RF presaturation 2π-spectra from images were interpolated with a smoothing spline method and corrected for B_0 inhomogeneities on a pixel-by-pixel basis. From corrected z-spectra, the asymmetry of the magnetization transfer rate (MTR) was determined by $\text{MTR}_{\text{asym}}(\delta) = \text{MTR}(+\delta) - \text{MTR}(-\delta)$.

Results:
Spatial resolution of datasets was sufficient to delineate cartilage from bone tissue in the examined samples (Fig. 1A, 2A). In healthy cartilage, no apparent increase of MTR asymmetry was observed between $\delta=0$ and $\delta=4.25$ ppm that can clearly be related to Hex accumulation in cartilage was observed (Fig. 1C, 3A). Instead, the MTR_{asym} curves showed similar patterns as reported for healthy cartilage tissue in CEST experiments with endogenous contrast. The average MTR_{asym} values at $\delta=4.25$ ppm ranged between 0.54 and 1.72 % in samples with different Hex concentrations and were -0.88±0.63 % (mean ± SD) in control (Fig. 1C). GAG content was strongly reduced by trypsin treatment, which was confirmed by histologic staining. Depleted cartilage showed clear increases in MTR_{asym} values at $\delta=4.25$ ppm compared to healthy cartilage (Fig. 2C, 3B). After 3 h degradation, MTR_{asym} was 2.68±0.32 % (50 % Hex), 3.94±0.87 % (100 % Hex), and after 1.5 h of degradation, 2.01±0.18 % (50 % Hex), 2.24±0.31 % (100 % Hex). Additionally, asymmetry curves showed clear signal increases between $\delta=3.5$ to 4.8 ppm, which corresponds to the resonance frequency of the amide protons of Hex.

Discussion and Conclusion:
We found specific increases of MTR asymmetry values in enzymatically degraded cartilage after being immersed in Hex. Since a reduced GAG content in these samples was confirmed by histologic staining, we attribute the observed increases to an accumulation of Hex in the cartilage as this is in good agreement with theory, which yields that the negatively charged contrast agent can only diffuse and accumulate in cartilage if FCD is reduced compared to healthy cartilage. This is the case when GAG are enzymatically degraded. These initial experiments therefore suggest that Hex is a potential CEST agent, which may be used for assessment of cartilage GAG content. The technique could furthermore be an alternative to Gd-based MR techniques used for this purpose, such as, e.g., dGEMRIC. However, further evaluations of pharmacokinetics as well as in vivo experiments are needed in order to confirm these initial in vitro results, and gain knowledge about possible specificity and sensitivity of the method.

References: