Microstructural Development of the Corticospinal Tract in Neonates with Transposition of the Great Arteries Investigated with DTI Before and After Cardiopulmonary Bypass Surgery.

Malek Makki1, Rabia Liamlahi2, Hitendu Dave3, Klaudija Batinic4, Walter Knirsch5, Janina Scheer1, Cornelia Hagmann6, and Bea Latal1
1MRI Research, University Children's Hospital, Zurich, Switzerland, 2Cardiology, University Children Hospital Zurich, 3Congenital Cardiovascular Surgery, University Children Hospital Zurich, 4Pediatric Intensive Care, University Children Hospital Zurich, 5Diagnostic Imaging, University Children Hospital Zurich, 6Neonatology, University Hospital Zurich, 7Child Development, University Children Hospital Zurich

Introduction: Neonates with d-transposition of the great arteries (d-TGA) require cardiopulmonary bypass (CPB) surgery within the first weeks of life. Despite improving periparative intensive care management with lowering overall mortality rate, morbidity remains high, in particular regarding the neurodevelopmental outcome in psychomotor and cognitive abilities during long term follow up [1,2]. There is a growing recognition of central nervous system impairments in surviving newborns with congenital heart disease (CHD) [3,4]. The aim of our study was to separately investigate the corticospinal tract (CST) of both hemispheres in neonates born at term with d-TGA before and after CPB surgery and compare it to age matched healthy controls. We hypothesized that the integrity of the white matter and intactness of the fibers will be abnormal in neonates with d-TGA. Furthermore, the development will be not be homogenous along the CST.

Methods: Fifteen term born neonates (GA 39 ± 1 weeks) with d-TGA had both pre and post surgical DTI scans on a 3.0 T scanner using 35 gradient directions with b-value = 700 [s/mm²]. The whole brain was covered with 2.5 mm slice thickness and in plane resolution of 0.86 x 0.86 mm². The neonates were prepared in advance (feeding, wrapping, ear plugs muffin) and were scanned in natural sleep. In addition ten healthy term neonates (GA = 39 ± 1 weeks) were recruited and had same MRI exam. At time of MRI the age of the pre-surgical group was 8 days (+6), the HC was 26 days (+5), and the post surgical group was 29 days (+5). Four levels of the brain pyramidal WM tract were chosen: 1) superior corona-radiata (CR), 2) posterior-limb of the internal capsule (PLIC), 3) cerebral peduncle (CP), and 4) medullar CST (M-CST). The study was approved by the local ethics committee and written informed consent was obtained from parents.

Results: Between groups analysis (general linear model controlling for conceptional age at time of MRI was corrected for multiple comparisons test and significance was set to p < 0.002. The FA decreased bilaterally in both the CR (Figure 1) and M-CST of the post-surgical group (Figure 2) compared to both the HC and the pre-surgical group. This was mainly caused by an abnormal increase of E23 in these structure in the post-surgical group compared to pre-surgical group (left: p = 0.012; right: p = 0.042). In the CR there was a higher E1 in the post compared to the pre surgical groups (left p=0.013; right p=0.013) and a higher right E1 in the post-surgical group compared to HC (p=0.045). The CP of the post-surgery group had lower left E1 (p=0.01) and lower left ADC (p=0.026) when compared to pre-surgical group.

Conclusion: Our findings demonstrated that following CPB surgery there was abnormal bilateral pattern of DTI indices in the CR, and M-CST of the dTGA patients compared to healthy neonates. Higher E23, lower E1 and lower FA values may be explained by abnormal axonal pruning, axonal swelling, thinner myelin sheaths, fewer degree of white matter organization, smaller axonal diameter, more oligodendrocytes or a combination of these processes. These early brain abnormalities and structural changes observed with non-conventional MRI along the cortico-spinal pathway may contribute to adverse neuro-developmental outcomes at older ages. It remains unclear whether the detected growth delay which is likely to start in-utero occurs in the third trimester of gestation or earlier, is of cyanotic or genetic origin.