Characterization of Hypoxic Areas in the Human Brain

Nuria Maria Hirsch¹, Christine Preibisch², Vivien Töth¹, Jürgen den Hollander³, Annette Förschler¹, Hendrik Kooijman¹, and Claus Zimmer¹

¹Department of Neuroradiology, Klinikum rechts der Isar der TU München, München, Germany; ²Department of Neurology, Klinikum rechts der Isar der TU München, München, Germany; ³Clinical Application, Philips Healthcare, Hamburg, Germany

Introduction: Hypoxia is assumed to promote the development and proliferation of tumor stem cells especially in highly malignant and aggressive tumors [1]. Techniques for quantifying tissue oxygenation could therefore significantly extend the diagnostic potential of MRI. The presence of paramagnetic deoxygenated hemoglobin in venous vessels causes microscopic susceptibility differences that are visible in T2* imaging. If additionally tissue vascularization and the hematocrit are taken into account, quantitative information on tumor oxygen saturation can be obtained. In this study, hypoxia was mapped semi-quantitatively from T2, T2* and CBV measurements with an emphasis on fast imaging methods that can easily be employed in the clinic.

Materials and Methods: According to the theory of Yablonskiy and Haacke, a relation between the fraction of oxygenated blood Y and the transverse relaxation times $T2$ and $T2^*$ can be derived for a blood vessel network of randomly oriented magnetized cylinders [2]:

$$1 - Y = \frac{R2^*}{\frac{4}{3} \pi \cdot R \cdot B_0} \cdot \frac{R2}{c \cdot CBV} = q$$

where $R2^* = 1/T2^* - 1/T2$, Y is the gyromagnetic ratio; $\Delta \chi = \Delta \chi_0 \cdot c \cdot Hct$ is the magnetic susceptibility of blood with $\Delta \chi_0 = 0.264$ ppm being the susceptibility difference between fully oxygenated and fully deoxygenated hemoglobin [3]. Those constants are merged in the constant c which is 317 sec$^{-1}$ for an assumed small vessel hematocrit Hct of 0.42±0.05 [4] at a field strength B_0 of 3T. The venous blood vessel fraction \cdot is approximated by the cerebral blood volume CBV. In this work the ratio $q = R2^* / (c \cdot CBV)$ is used as an indicator for hypoxia. Imaging was performed on a 3T Philips Achieva (Philips, The Netherlands) with an 8-channel receive head coil and a whole-body transmit coil. $R2^*$ mapping (voxel size $2x2x3$ mm3, matrix $112x106, 30$ slices) was performed in 4 healthy subjects ($3m$, mean age $33y$) and 20 glioma patients ($11m$, mean age $54y$). $T2^*$ was measured with a multi-gradient echo sequence (12 echoes, $TE_1 = 6$ ms, $ATE = 5$ ms, $TR = 1950$ ms, $= 30^\circ$, rapid flyback, acq time $3:05$ min). $T2^*$ maps were corrected for background gradients [5] and motion artifacts, if necessary [6]. $T2$ maps were obtained using a GRASE sequence (8 echoes, $TE_1 = 16$ ms, $ATE = 16$ ms, $TR = 8547$ ms, acq time $2:16$ min). Only the even echoes were fitted to eliminate influences of imperfect RF pulses. In patients, CBV maps were obtained by VASO [7] and the DSC method [8]. Data coregistration, fitting and calculation of q was performed with SPM8 (www.fil.ion.ucl.ac.uk/spm) and custom programs in Matlab (The MathWorks, Natick, MA, USA); DSC data were evaluated using Stroketool (Digital Image Solutions, Frechen, Germany). CBV$_{VASO}$ was normalized by setting healthy white matter to 1.5%. Since VASO tends to underestimate CBV in healthy tissue and overestimates in areas where the contrast agent leaks to the extravascular space [9], CBV$_{VASO}$ was limited to values between 1.5% and 10%.

Results and Discussion: $R2^*$ maps from healthy volunteers were relatively homogenous with moderate contrast between GM and WM, but increased values in areas with iron deposition or macroscopic magnetic susceptibility gradients. In GM and WM, the subject averages of $T2$ were 92.7 ms and 76.4 ms; $T2^*$ amounted to 55.2 ms and 51.1 ms; $R2^*$ was 7.6 sec$^{-1}$ and 6.4 sec$^{-1}$. Our $T2^*$ values agree well with a recent study on tissue oxygenation whereas our $T2$ and $R2^*$ values are at least 10% higher [10]. Thus, overestimation of $T2$ due to RF pulse imperfections [11] is the most likely reason why the average quotient q was not restricted to the range $[0, 1]$ as expected by theory.

Nevertheless, the quotient q seems to allow a semi-quantitative evaluation of hypoxic areas in gliomas. In 9 patients we found increased values for q indicating potentially hypoxic areas either in the contrast enhancing solid tumor or in the non-enhancing infiltration zone. In other cases the hyperintense signal corresponded to tumor necrosis or intratumoral bleeding.

Figure 1 shows a selected slice of a glioma patient. $R2^*$, q_{VASO} and q_{DSC} reflect areas of increased susceptibility differences due to increased amounts of deoxyhemoglobin, where the q maps are corrected for high vascularization. While q_{VASO} shows one potentially hypoxic area in the tumor, two such areas can be seen in the q_{DSC}. This illustrates the problem of CBV quantification in areas with contrast agent leakage (see contrast enhanced T1w image for reference). CBV$_{DSC}$ clearly overestimates the real CBV and thus largely decreases q_{VASO}. The DSC method on the other hand rather tends to underestimate CBV [12], which generally increases q_{DSC}. Thus, both methods suffer from systematic errors in areas of contrast agent leakage. DSC also requires an arterial input function whose determination can be problematic. Overall, DSC CBV mapping turned out to be more robust.

Conclusion: Calculating the ratio q from $T2$, $T2^*$ and CBV provides a method to detect microscopic susceptibility variations and indicate potentially hypoxic areas in the brain. q is biased in areas with increased iron content, e.g. in the pallidum, in hemorrhages, or in areas where $R2^*$ values are unreliable due to macroscopic susceptibility gradients affecting $T2^*$. However, in combination with anatomical images, hypoxic tumor areas can be detected in this way. To make the method truly quantitative, the values of all required parameters would have to be determined as exactly as possible, which is still somewhat out of scope of a clinical protocol in terms of speed and volume coverage.