Assessment of R2* in primary colorectal cancer: Reproducibility and sequential changes following chemoradiation in relation to DCE-MRI parameter changes.

Vicky J Goh1, N. Jane Taylor1, Aftab Khan1, J James Stirling1, Ian C Simcock1, Robert Kozarski1, Robert Glynne-Jones2, James A d’Arcy4, David J Collins4, and Anwar R Padhani1

1Paul Strickland Scanner Centre, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, 2Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, United Kingdom, 3University of Hertfordshire, Hatfield, Hertfordshire, United Kingdom, 4CRUK-EPSRC Cancer Imaging Centre, Institute of Cancer Research & Royal Marsden Hospital, Sutton, Surrey SM2 5PT, United Kingdom

BACKGROUND: Intrinsic susceptibility weighted MRI (ISW-MRI) provides information on the oxygenation status of the blood volume. The aim of this study was to assess the reproducibility of R2* and sequential changes following chemoradiation therapy (CRT), in relation to perfusion changes shown by dynamic contrast enhanced MRI (DCE-MRI).

METHODS: Following institutional review board approval and informed consent, 14 patients underwent ISW-MRI and 3D DCE-MRI at 1.5T using the following parameters: ISW - TR 100ms, TE 4.76 to 61.93 ms, NEX 2, FOV 260mm, 256 acquisition matrix, slice thickness 5mm, total 6 slices (R2*: s⁻¹); DCE-MRI TR 6.6ms, TE 1.22ms, flip angles 3° (PDW) and 21° (T1w) NEX 1, FOV 260mm, 256×174 acquisition matrix, slice thickness 5mm, 12 slices (6 usable), TA: 6m 25s (extended Tofts model; IAUGC₆₀ (mmol.s) and Ktrans (min⁻¹)). Imaging was repeated at baseline (Day 1 and 2) to allow reproducibility assessment and at the following time points after chemoradiation (45 Gy in 25 fractions; capecitabine 850 mg/m²): within 2 weeks of treatment completion, 6 weeks post and 11 weeks post (just prior to surgery). Parametric images were calculated using MRIW and DiffusionView software (Institute of Cancer Research, UK): Regions of Interest were drawn on the DCE-MRI images by an experienced radiologist and transferred onto the R2* images. Reproducibility was assessed by Bland-Altman statistics. Changes in R2* were assessed by Wilcoxon rank test. Correlation between R2* and Ktrans was assessed by Spearman’s rank correlation; two-tailed significance at 5%.

RESULTS: Imaging was successful at baseline (reproducibility) in 14/14 (100%), in 13/14 (92.9%) immediately post-treatment, in 11/14 (78.6%) at 6 weeks and in 9/14 (64.3%) patients at 11 weeks. Baseline R2* values for the cohort are summarised in Fig. 1. The mean difference and 95% limits of agreement were -0.15s⁻¹ and -6.15 to 6.22s⁻¹ respectively, within-subject coefficient of variation 8.5%, and repeatability coefficient r = 23.5% (as a percentage of the mean). Mean R2* increased from +5.8% post treatment to +14.4% by 6 weeks post CRT reducing at 11 weeks to +5.0% from baseline. Correspondingly mean IAUGC₆₀ decreased from -11.1% post treatment to -26.6% at 6 weeks to -27.9% at 11 weeks from baseline. Ktrans decreased from -32.3% post treatment to -34.9% by 6 weeks to -53.8% at 11 weeks from baseline.

CONCLUSION: R2* increases with decreases in IAUGC₆₀ and Ktrans accompanied by loss of correlation between R2* and Ktrans suggest that colorectal tumors are made hypoxic by chemoradiotherapy. These results have implications with regard to the optimal timing of surgery following the completion of therapy.

Figure 1: Reproducibility for R2*

Figure 2: Matched longitudinal series of R2* images (top) and Ktrans images (bottom). L>R: repro 1, repro 2, immediately after CRT, 6 weeks post CRT and 11 weeks post-CRT. ROI values are shown under the respective image.