Feasibility of High Resolution Diffusion Weighted MRI of the Breast using Readout Segmented EPI or Single Shot EPI

Shotaro Kanao1, Masako Kataoka1, Mami Iima1, Rena Sakaguchi1, Natsuko Onishi1, Tomohisa Okada1, David Andrew Porter2, Thorsten Feiweier2, and Kaori Togashi1

1Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan, 2Neurology Applications, Siemens AG

INTRODUCTION: Diffusion weighted MR imaging (DW-MRI) is expected to increase diagnostic accuracy of detecting breast cancer due to excellent lesion conspicuity. However, compared to dynamic contrast MRI (DC-MRI), image quality of DW-MRI is generally poor because of low spatial resolution and image distortion, particularly around the nipple or breast-air interface. According to Guideline of the European Society of Breast Imaging, special resolution of DC-MRI should be at least 1.0x1.0x2.5mm. If DW-MRI is used to evaluate breast lesion, it would be ideal to achieve high special resolution equivalent to DC-MRI, with minimal image distortion. Readout segmented EPI (RS-EPI) is a recently-developed technique to obtain high resolution DW-MRI with less distortion. The objective of our study is to evaluate the feasibility of high resolution DW-MRI (special resolution of 1.0x1.0x2.5mm) of the breast, using RS-EPI and single shot echo planer imaging (SS-EPI).

MATERIALS and METHODS: With IRB approval, 26 patients with clinically suspected breast cancer were prospectively enrolled between January and November 2011. Breast MRI was performed at 3.0 T scanner (MAGNETOM Trio, A Tim System, Siemens AG) with 16ch breast coil. Sequences were as follows: axial T1WI, T2WI with fat saturation, 3D dynamic DC-MRI series and DW-MRIs. Sagittal unilateral breast DW-MRIs of b values 0 and 850 sec/mm² were obtained using the following parameters: 1) RS-EPI: TR/TE=6800/60ms, FOV=200x150mm, matrix=200x150, 2.5mm thickness, 40 slices, resolution of 1.0x1.0x2.5mm NEX=1, iPATx2, 3min 32sec, seven shots. 2) SS-EPI: TR/TE=8400/69ms, FOV=200x156mm, matrix=200x156, 2.5mm thickness, 40 slices, resolution of 1.0x1.0x2.5mm, NEX=5, iPATx2, 3min 30sec. To evaluate degree of image distortion, the Antero-posterior (AP) distance of mammary gland and scored distortion artifacts and ghost artifacts on DW-MRIs with RS-EPI and SS-EPI (b=0) was measured and compared to the distance measured on T2WI as a reference. To evaluate the diagnostic performance of each sequence in breast cancer, lesions on RS-EPI/SS-EPI DW-MRIs (b=850) and DC-MRI were categorized based on Breast Imaging Report and Data System (BI-RADS). For quantitative evaluation, apparent diffusion coefficient (ADC) of background mammary gland and lesions were measured.

RESULTS: We could complete all the sequences of each patient. Eighteen patients were pathologically confirmed as breast cancer. The average differences measuring AP distance of mammary gland between T2WI and SS-EPI and that between T2WI and RS-EPI were 12.5±4.7 and 2.3±2.0 mm, respectively (p<0.01). Distortion artifacts were more significant at SS-EPI in all cases (Figure 1, 2), but no significant difference of ghost artifacts were observed between two sequences. Sensitivity of DC-MRI, DW-MRIs of RS-EPI and SS-EPI was 94.4, 94.4 and 88.9%, respectively. Average ADCs of the mammary gland by SS-EPI and RS-EPI were 1.47±0.40 and 2.12±0.24 10⁻³ mm²/ sec, respectively (p<0.01) and those of breast cancer were 0.87±0.32 and 1.04±0.36, respectively (p<0.01).

CONCLUSION: High resolution DW-MRI of the breast is feasible both RS-EPI and SS-EPI procedure. DW-MRI using RS-EPI has advantage of less distortion.


Figure 1. Sagittal images of normal breast.
1a. T2WI (MPR) 1b. RS-EPI (b=0) 1c. SS-EPI (b=0)

Figure 2. Sagittal images of patient with DCIS.
2a. DC-MRI (subtraction) 2b. RS-EPI (b=850) 2c. SS-EPI (b=850) 2d. ADC map (RS-EPI) 2e. ADC map (SS-EPI)