Simulations of the Impact of TWIST View Sharing on the Measured Enhancement in Breast DCE MRI
Yuan Le1, Christian Geppert2, Randall Kroeker3, Brian Dale2, and Chen Lin1
1Radiology, Indiana University, Indianapolis, Indiana, United States, 2Siemens Healthcare, Erlangen, Germany

Introduction Dynamic contrast-enhanced MR imaging (DCE-MRI) is an important diagnosis tool for breast cancer. K-space data sharing techniques [1-2] such as Time-resolved angiography With Stochastic Trajectories (TWIST) can be very helpful [3-5] in DCE-MRI to balance the requirements of high spatial and temporal resolutions. However, sharing k-space data from different time points of dynamic contrast enhancement will impact the measured signal intensity [6-7]. To study how k-space data sharing strategy affects the measured contrast uptake in breast cancer and optimize imaging parameters, we conducted a simulation similar to that described by Song [8], to estimate the error due to k-space data sharing on the enhancement and to evaluate its impact on breast cancer diagnosis.

Methods A simulated breast 'phantom' has 448x448x16 isotropic voxels and dimensions of 36x36x13 cm. Enhancing spherical lesions of different diameters and three types of contrast enhancement curves (persistent, plateau and wash-out as defined by ACR-BIRADS description [9], shown in Fig. 2) were generated and considered as the "True" lesion enhancement while normal breast tissue was assumed to have no enhancement. As in typical clinical breast DCE-MRI protocols, k-space data at six time points (1 pre- and 5 post-contrast) were generated by Fourier transform of the phantom data and then sampled with 80% resolution in two phase encoding directions. Images were reconstructed with and without k-space data sharing. A k-space data sharing strategy similar to TWIST and ECTRICK was used, i.e. the k-space data was divided into a central region A and a peripheral region B [8]. In this study, the ratio of the k-space views in region A and total k-space views, pA, was varied from 0.2 to 0.5 while the fraction of the k-space views region B that is re-sampled at each time point, pB, was kept at 0.5, i.e. 50% of peripheral k-space views were the same views simulated for previous time point. Enhancement curves are calculated by averaging the enhancement of all voxels within a spherical ROI centered in the lesion at each time point. Since clinical diagnosis is usually based on the 'worst' area in a lesion, a 3 mm diameter ROI at the center of the lesion was also used in addition to a whole lesion ROI.

Results Fig.1 shows the signal intensity distribution in a tumor from images with/without k-space data sharing at the first post-contrast time point. There is noticeable change in signal intensity distribution due to k-space data sharing. Fig. 2 shows the simulated enhancement for three different types of 6 mm lesion compared with their 'True' enhancement. The under-estimation for the first post-contrast time point was 10% in the plateau and 12% in wash out curves, while the type of curves can still be correctly determined. Fig. 3 and 4 shows the deviation from wash-out curves for various lesion sizes with pA=0.33 and for various central k-space region A fractions with lesion size=6mm, respectively. With pA > 0.33 and pB=0.5, for lesion diameter > 5 mm, the type of enhancement curve can be correctly determined using signal average from a 3mm ROI.

Discussion Our simulations show that k-space data sharing can cause errors in the measured enhancement curve of breast lesion especially when the lesion is small. For tumors with a diameter of more than 5 mm, the measured enhancement curve type can be preserved under certain conditions. According to ACR-BI-RADS, enhancement of less than 5 mm (foci) is usually not followed-up with intervention [9-10]. Therefore, using a k-space data sharing strategy like TWIST, with greater than 33% central region fraction and more than 50% peripheral region sampling density, will not significantly distort the enhancement curve and therefore adequate for clinical breast DCE MRI.

These results and further follow-up studies may provide guidance for optimizing clinical protocols when k-space data sharing is applied and be helpful in understanding and improving k-space data sharing strategies in breast MRI. Although TWIST strategy was used in this study, this method can be used to analyze other k-space data sharing methods.