Simulation and experimental verification of eddy current due to RF coil shielding

Yujuan Zhao1, Tiejun Zhao2, Daniel Stough3, Chad Harris3, William Handler3, Hai Zheng1, Shaohua Lin4, Fernando Boada1, Blaine Chronik3, and Tamer Ibrahim1

1University of Pittsburgh, Pittsburgh, Pennsylvania, United States, 2Siemens Medical Solutions, Pittsburgh, Pennsylvania, United States, 3University of Western Ontario, London, Ontario, Canada, 4ANSYS, Pittsburgh, Pennsylvania, United States

Introduction: RF shielding can improve transmit efficiency, reduce SAR, and increase Signal Noise Ratio (SNR) significantly. It is very important for MRI RF coil design, especially for ultra-high field 7T MRI applications. Nevertheless, RF copper shielding induced eddy current could be very problematic. There are patents and papers discuss shielding slots method to reduce eddy currents [1, 2]. Less reported is the quantitative eddy current study. Analytically, eddy currents are notoriously difficult to calculate. In this present work, we simulate the eddy current distorted gradient field. Successful MRI field experiment validation is also delivered. Eddy current characterization is studied based on eddy current response function.

Methods: Coil and Experiments: A 4-element Tic-Tac-Toe coil [3] was constructed and five sides head-long rectangular copper RF shielding models were constructed in SolidWorks. In the ANSYS Maxwell 14.0 Transient solver, the coil model was imported and eddy current distortion was simulated. Eddy Current Characterization: The eddy current characteristics could be demonstrated by the eddy current response function H(t) [4, 5, and 6]. H(t) was modeled as the sum of multiple exponential terms with constant time and variable amplitude parameters in this work. The eddy currents induced magnetic field could be derived as the convolution of the negative time derivative of the ideal gradient field and the eddy current response function H(t). In order to fit the eddy current response function (H(t)), magnetic field distributions were simulated with and without Tic-Tac-Toe coil in the ANSYS Transient solver.

Results and Discussion: Figure2 displays results from simulation. It shows a comparison of the ideal gradient strength Gz and the real gradient strength at different positions along Z direction, which is defined as (B0/|Gz|). The positive direction is in the direction of the head and the negative direction is in the direction of the feet. The ideal gradient ramp up time is 30us. From Figure2, we can notice that Gz is deviating from the ideal Gz at the beginning and becomes stabilized and equals to Gz after several hundred micro seconds (~200us). Therefore, this ramp up time is significantly increased by the eddy current effects. The gradient field strength/distribution is noticeably distorted and is non-linear along Z direction. It also shows that ramp up time and magnetic field strengths distortion is asymmetric for the positive and negative direction because of the existing of cap copper shielding on top of the coil. Figure 3 shows the measured gradient waveform at different positions. The ramp up time of the measured gradient trajectory was increased to ~200us which agrees well with the prediction form the simulation. The experimental results also demonstrate that eddy current distortion is not linear along the Z direction and asymmetric as those shown in Figure2. There are some minor discrepancies: the slight oscillating between 200us to 600us measured in experiments was not in the simulation, which worth further investigation.

To study the effects of eddy current at different locations, the eddy current response function H(t) obtained from simulation results are presented in Figure4. It shows that the eddy current response functions H(t) have different characteristics for positive and negative directions. Figure5 demonstrate that H(t) is not a linear function. The eddy current effects are more prevalent in positive 60mm position than the negative 60mm position as shown in Figure5. H(t) is (-80,-13, 0) at -60mm and (133, 55, 15) at 60mm, at 0us, 60us and 120us respectively. They all indicate the eddy current effect is stronger near the cap. This finding also agrees with our EPI images (Figure6) and localized excitation images (Figure7). Figure6 demonstrates that there are more field distortions in the slice (a) which is closer to the cap than the slice (b). The red solid arrow is the phantom image and dash arrow is the artifacts. Figure 7(a) is the image of surface of the brain and it was tilted by the eddy current; the slice (b) is a smooth rectangular image (at the position deeper inside the brain) which shows fewer eddy current. Overall, the simulations provide excellent correlation with the experimental findings.

Conclusions: Eddy current induced by RF coil copper shielding can significantly distort the linear gradient field. These distortions are asymmetric and non-linear at different positions if there is a cap copper shielding. The eddy current simulation method presented in this paper is verified by the measurement results. The agreement of experimental and numerical data demonstrates the potential of using simulation methods in the study of eddy current characterization and in designing methods/techniques that can minimize eddy current.

Acknowledgements: This work was supported by NIH and Siemens Medical Solutions.
