Simultaneous Whole-Body PET/MRI with Continuous Table Motion

Harald Braun1, Susanne Ziegler1, Daniel H Paulus1, Jens U Krause1, and Harald H Quick1

1Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Bavaria, Germany

Introduction: Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) as a new hybrid imaging modality has become clinical reality [1, 2]. In both PET and MRI, data is usually acquired in a multi-station (MS) approach where the patient bed is held at a constant position during data acquisition. Multi-station data acquisition, however, inherently might suffer from several shortcomings when performing whole-body examinations. Examples of such shortcomings are varying sensitivity (PET) or distortion (MRI) in z-direction, combination artifacts between individual stations/bed positions in whole-body examinations, etc. Furthermore MR data acquisition is constrained to the table positions dictated by PET when performing the PET scan in MS mode. Therefore an acquisition scheme with continuous table motion (CTM) seems attractive, most notably in the context of a simplified workflow and higher patient throughput.

In this work, a rebinning approach to enable reconstruction of PET data that was acquired with CTM was developed and evaluated. In combination with existing CTM MRI protocols (e.g. [3]), this approach for the first time enables simultaneous whole-body PET/MR hybrid imaging during continuous table movement.

Materials and Methods: All measurements were performed on a Biograph mMR (Siemens AG, Healthcare Sector, Erlangen, Germany), a hybrid whole-body PET/MRI system consisting of a 3T MRI scanner and a fully integrated PET unit that allow for simultaneous PET and MRI data acquisition. An axial field-of-view (in z-direction) of around 258 mm for PET and around 450 mm for MRI are provided. The bore opening is 60 cm in diameter.

Simultaneous and independent acquisition of PET and MRI data is possible on the scanner, however only MS acquisition mode is supported by the user interface for the PET unit. The MRI unit supports several CTM protocols (syngo TimCT, Siemens AG) that are to be evaluated: 2D FLASH (fast low angle shot), 3D FLASH, TSE (turbo spin echo) and HASTE (half fourier acquisition single shot turbo spin echo).

For the PET unit, CTM data acquisition has to be started manually on the scanner via command line in list-mode format. Several corrections like decay correction, normalization, randoms correction and attenuation correction are then performed offline as well as rebinning considering the moving table geometry with software that was developed in the context of this work.

For this study, an activity of around 400 MBq was injected into the phantom, yielding an activity concentration of around 12 kBq/ml. It was then measured with different MR protocols and PET acquisition times for the next 3 hours p.i. The large extent of the phantom was chosen to be able to assess PET and MRI on a whole body scale, potentially revealing geometric distortions when using large FOVs in MR and PET imaging. Due to the large amount of plastic in the phantom, that is not visible in MRI but contributes to attenuation of the PET signal, a CT scan of the phantom had to be acquired and registered to the MRI data in order to provide valid attenuation correction factors for PET reconstruction.

Results and Discussion: Measurements showed that data acquisition with CTM in simultaneous PET/MRI is technically feasible (Fig. 2) and has also been demonstrated to be feasible for clinical patient data (Fig. 3). In MRI, both the MS approach and CTM acquisitions have their own strengths. MS mode can be considered superior in terms of spatial resolution. CTM mode, however, is much less affected by geometric distortions in z-direction as data is always acquired in the isocenter which is the area of highest magnetic field homogeneity.

In PET, CTM acquisitions exhibit comparable characteristics as the standard MS approach. CTM is, however, better in terms of axial sensitivity and temporal efficiency. A current limitation is the long time needed for CTM acquired PET data reconstruction. This is due to the implementation of the reconstruction process, though, and could be greatly improved by the use of parallelized code and e.g. graphics card hardware.

In conclusion, continuous table movement for simultaneous PET/MR hybrid imaging has been developed and renders the PET/MRI data acquisition process much more flexible. This technique holds potential for simplified imaging workflow, reduced artifacts and higher patient throughput in PET/MR hybrid imaging.