Joint Inference of Field Inhomogeneities with Fat Likelihood Estimation from Three Echoes

Wenmiao Lu1, and Yi Lu2

1Beckman Institute, University of Illinois, Urbana-Champaign, Illinois, United States, 2Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Illinois, United States

Introduction: Robust multi-echo water-fat separation at high field remains challenging in the presence of long echo-spacing and large field inhomogeneities. Recent work by Yu et al. [1] greatly improves the robustness of field map estimation by computing a priori fat likelihood. However, obtaining reliable fat likelihood requires rather long echo train (6 echoes) to observe the signal difference arisen from single-peak water model and multiple-peak fat model. In this work, we demonstrate that inconclusive fat likelihood estimation from three echoes can be effectively combined with field map smoothness via a joint inference algorithm, which enables robust water-fat separation in challenging imaging scenarios at 3T.

Theory: The signal S_i received at echo time TE_i is

$$S_i = (W + F)\sum a_i e^{i2\pi f_i(TE_i)}e^{i2\pi f_w i},$$

where Δf_i are the chemical shift between water W and the i^{th} spectral component of fat F. Given the multi-peak fat parameters a_i and Δf_i, we can compute the least-squares fitting error J_W as the function of the unknown field inhomogeneity ψ [2]. Two smallest local minima of J_W at ψ_W and ψ_F are located within one spectral FOV [0, 1/ΔTE], where ψ_W and ψ_F result in water-dominant and fat-dominant separation results, respectively. Denote their corresponding fitting errors as J_W and J_F; a priori fat likelihood P_F is given by $J_W/\{J_W + J_F\}$.

The larger the water-fitting error J_W as compared to the fat-fitting error J_F, the more likely the fat is dominant (Fig. 1a). However, J_W and J_F can be very close when estimated from three echoes using the multi-peak fat modelling, especially for voxels containing water-fat mixture (Fig. 1b). Similar J_W and J_F results in inconclusive fat likelihood (i.e., $P_F \approx 0.5$), which imposes challenges on resolving the correct field inhomogeneity.

Methods and Results: For each voxel, ψ_F and ψ_W and their spectral replicas are considered feasible field map values, which are assigned with the corresponding a priori likelihood P_F or $1 - P_F$. An interaction potential V_{pq} is exchanged between two neighboring voxels p and q on their feasible field map values ψ_p and ψ_q:

$$V_{pq} \propto P_{q} P_{p} \exp(-|\psi_p - \psi_q|^2),$$

which blends both the difference between two feasible values and their a priori likelihood. The interaction potential between ψ_p and ψ_q is large when both a priori likelihoods are close to 1 and the difference between two values is small. More importantly, the interaction potential enables a voxel with strong a priori likelihood to exert influence on its neighboring voxels with less conclusive a priori likelihood. The interaction potential is embedded in a soft-decision message from p and q at the i^{th} iteration

$$m_{q→p}(\psi_p) = \sum_{\psi_q} (V_{pq} \prod_{x \in \text{nei}(p)} m_{x→p}(\psi_q)) \eta^{-1}_{q→p}(\psi_p),$$

where $\eta(p) \setminus q$ denotes the set of pixels neighboring to p other than q. By exchanging the soft-decision messages between voxels, the algorithm jointly infer the most likely field values across the whole image grids [3].

A multi-echo SPGR sequence was used to perform liver studies on 11 obese cats using a body matrix coil and a spine coil on a Siemens Tim Trio 3T scanner. The images were acquired with respiratory gating and 2 ms ΔTE, 5° flip angle, 128x128 matrix size, 20x20 cm² FOV. Fig. 2a shows that subcutaneous fat has very strong fat likelihood estimate (i.e., $P_F \approx 1$), while some regions in the fatty liver have inconclusive fat likelihood estimates (P_F fluctuates around 0.5 inside the black circle). In spite of inconclusive fat likelihood estimates, the proposed inference algorithm achieves uniform water-fat separation for all studies. The sample separation results are shown in Fig. 2b and c.

Conclusion: This work presents a joint inference algorithm which effectively combines the field map smoothness constraint and the fat likelihood estimated from three echoes. This technique is potentially useful for motion-sensitive applications, such as liver fat quantification.