Spatially-variant B_0 field gradients in the liver: implications for R_2^* mapping for iron quantification

Debra E. Horng1, Diego Hernando1, Jens-Peter Kühn1,3, and Scott B. Reeder2,3

1Radiology, University of Wisconsin-Madison, Madison, WI, United States, 2Medical Physics, University of Wisconsin-Madison, Madison, WI, United States, 3Radiology and Neuroradiology, Ernst Moritz Arndt University Greifswald, Greifswald, Germany

Introduction: R_2^* relaxometry is a promising technique for liver iron quantification. However, measured R_2^* values are affected by several confounding factors, including the presence of macroscopic B_0 field inhomogeneities due to susceptibility effects, e.g., near the dome of the liver. Susceptibility effects introduce errors in the apparent R_2^*, and these errors can be highly protocol-dependent. The purpose of this work is to characterize the B_0 distribution in the liver in order to optimize acquisition strategies.

Methods: After IRB approval, 6 patients with no known iron overload underwent chemical shift-based MR imaging of the liver acquired at 3T using an investigational multi-echo 3D spoiled gradient echo, with two protocols with different image parameters. Protocol 1: sagittal slab, TR=9.0 ms, 6 echoes/TR (1 shot), TE=0.8 ms, $\Delta T E=1.2$ ms, with slice thickness = 3.0 mm. Protocol 2: axial slab, TR=8.0 ms, 3 echoes/TR (2 shots), TE=1.2 ms, $\Delta T E=1.0$ ms, with slice thickness = 8.0 mm. Separated water and fat images, an R_2^* map, and a B_0 field map were obtained using a chemical shift-based water-fat separation algorithm. The spatial gradient of the B_0 field map (in \hat{x}, \hat{y}, \hat{z}) was computed from the sagittal data. ROIs were placed in the 9 Couinaud segments of the liver by a radiologist with >5 years experience in liver imaging, in order to measure the 3 components of the gradient. Theoretical B_0 field maps were calculated for each subject based on known susceptibility values of water/fat/air, and an anatomically specific susceptibility distribution (derived from the fat-water separation described above), in order to characterize the source of B_0 field inhomogeneities. Finally, theoretical B_0 gradients were obtained from the calculated B_0 field for each segment in each subject, and compared with the measured B_0 field gradients.

Results: Segment 2 has the highest gradients with an average of 22.0 Hz/cm for the measured gradients, and also the highest standard deviation at an average of ±13.6 Hz/cm (Fig. 3). Segments 4A, 7, and 8 also have large gradients in the \hat{z} direction (all above 15 Hz/cm). The measured and simulated average gradients have correlations of 0.79 for \hat{x}, 0.91 for \hat{y}, and 0.83 for \hat{z}, demonstrating good agreement. In contrast to the agreement between theoretical and measured average gradients in Fig. 3, Fig. 4 demonstrates that the simulated gradients do not predict the measured gradients well for an individual segment of a particular liver.

Discussion and Conclusion: The difference in the behavior between the average gradients in Fig. 3 and the individual gradients in Fig. 4 may be explained by the relative simplicity of the susceptibility model used in the simulation. Rapid field variations along \hat{z} near the liver dome (segments 4A, 7, 8) result in an increase in the apparent R_2^*, as often observed in scans acquired axially with thick slices. Thus, sagittal or coronal acquisitions, rather than axial, may be preferable if localized R_2^* measures near the liver dome are required. The methods presented in this work may be used to optimize acquisition parameters to minimize the field variation within a voxel to avoid susceptibility-related errors in R_2^* measurement for liver iron quantification.

Acknowledgements: We gratefully acknowledge support from the NIH (R01 DK083380, R01 DK088925, and RC1 EB010384), WARP Accelerator Program, the Coulter Foundation, and GE Healthcare.