Introduction: The fast and simultaneous quantification of MR parameters with a single sequence (IR-bSSFP [1]) has been proposed several years ago. The method is not suitable for 3D imaging due to long magnetization recovery interruptions. The used bSSFP-sequence is highly sensitive to off-resonance effects resulting in banding-artifacts and leading to over and underestimation of the parameters. Especially at higher fields, off-resonances cannot be avoided anymore. Here we propose a new approach for simultaneous quantification of M_0, T_1 and T_2 based on phase-cycled bSSFP in 3D. The new proposed method yields its dynamics from the signals phase and offers intrinsic off-resonance compensation. This work presents the new theory and shows an experimental validation.

Methods: Experimental data-signal p from a phase-cycled bSSFP-sequence can pixel-wise fitted into a common ellipse equation:

$$p = x_0 + iy_0 + (x \cdot \sin(\Phi) + iy \cdot \cos(\Phi)) \cdot e^{-t \cdot \omega}.$$

Five data-points are required to determine an unambiguous fit. The common complex bSSFP steady-state equation can be recast into [3]:

$$S_{bSSFP,\Theta} = \frac{M_{SS}}{1 - e^{-t \cdot \omega}}$$

with $\Theta = \Delta \Theta + \Delta \omega \cdot TR$, $b = b(T_1, T_2, TR, \alpha)$, $M_{SS} = M_{SS} (M_0, T_1, T_2, TR, \alpha)$, $\Delta \Theta$ as used phase-cycle. The shape of the function is similar to an ellipse equation and is a function of M_0, T_1, T_2, flip-angle α and TR. The ellipse shape allows to interpolate to any arbitrary off-resonance $\Delta \omega$ and hence to off-resonance free signals of measurements with $\Theta = (0^\circ, 180^\circ)$ for every pixel.

The ratio $\xi = \xi (\alpha_1, T_1, T_2, TR) = S_{bSSFP,\Theta=180^\circ} / S_{bSSFP,\Theta=0^\circ}$ can be used as the first fit variable. The second fit variable is the slope $m_{SS} = m_{SS} (\alpha, T_1, T_2, TR)$ of the demodulated magnetization [2]. The demodulated magnetization can be calculated from four data-points with perpendicular phase-cycles applying the Cross-Solution(XS) [3]. Both variables ξ and m_{SS} only depend on T_1, T_2 as well as the parameters TR and α_1. Therefore the parameters can be obtained by numerical fits. Spin density M_0 can be calculated from the demodulated magnetization M_{SS} as well as $\Delta \omega$ from signal equation.

Experiments: In-vivo measurements were performed on a healthy volunteer using a 1.5T clinical scanner. A bSSFP-sequence with non-selective super-balanced RF-pulses [4] was used. Two flip-angles of 33° and 50° were used as well as a TR-time of 8ms. 8 different phase-cycles were measured to overdetermine the ellipse. 4 more images were acquired for the second flip-angle. Total imaging time for a 192x192x44 matrix was approximately 14min. An exemplary raw data image is shown in the figure below. The obtained M_0, T_1- and T_2-maps do not suffer from banding-artifacts, see in the figure below. The obtained T_1- and T_2-times show good agreement for lower values.

![image](https://example.com/image.png)

(a) raw data image with severe banding-artifacts
(b) M_0-map(arb. units) of a human head
(c) T_1-map(ms) of a human head
(d) T_2-map(ms) of a human head

Conclusion: In this work we have shown that phase sensitive PC-bSSFP measurements can be used to obtain T_1, T_2, $\Delta \omega$ and M_0. The method is a 3D and suitable for higher field strength. In contrast to DESPOT2 [5], all measurements can be done simultaneous with one imaging sequence, no T_1-information is required a priori. A thorough analysis about accuracy and robustness as well as optimal flip-angles is subject of current research. Parallel imaging methods may be applied for speed up.

Acknowledgment: The authors thank SIEMENS, Healthcare Sector, Erlangen, Germany for technical support and Bavarian Ministry of Economic Affairs, Infrastructure, Transport and Technology (BayStMWIVT) for financial support.