Validation of Quantitative Human Brain Perfusion Measurement with Intravoxel Incoherent Motion (IVIM), with a Hypercapnia and Hyperoxygenation Challenge.

Christian Federau1, Philippe Maeder1, Kieran O'Brien2, Patrick Browaeys1, Markus Klarhoefer3, Reto Meuli1, and Patric Hagmann1

1Dept. of Radiology, CHUV, Lausanne, Switzerland, 2University of Geneva, CIBM, Switzerland, 3Siemens, Switzerland

Purpose
Quantitative brain perfusion measurement remains a major challenge to currently available MR perfusion methods. Quantification dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MR are hampered by signal non-linearity and dependence on arterial input function. Arterial spin labeling (ASL) exhibits, in addition to a low signal-to-noise ratio, a strong dependence to transit time. This transit time can be very variable in a patient population. The intravoxel incoherent motion (IVIM) method introduced by Le Bihan et al [1] offers a non-invasive, alternative method to measure brain perfusion quantitatively. As opposed to DSC, DCE and ASL, IVIM has a unique capillary dependence, which is not sensitive to coherent laminar flow of arteries and veins. Further, IVIM’s measurement is intrinsically local: the encoding and readout are done at the same location. We tested the IVIM method in 7 healthy volunteers under graded hypercapnia (a well known potent powerful intra-cerebral vasodilator, leading to an increase of cerebral blood flow) and under hyperoxygenation (shown to significantly decrease cerebral blood flow) [2].

Materials and Methods
The IVIM method is based on a bi-exponential fit (*) of the relative signal obtained with the Stejskal-Tanner diffusion sequence [3] for multiple b-values, which permits the extraction of the perfusion-fraction f and the pseudo-diffusion coefficient D*. D is the diffusion coefficient, and $S_0 = S(b=0)$.

\[
\frac{S(b)}{S_0} = f e^{-bD^*} + (1-f) e^{-bD} \quad (*)
\]

We acquired 16 different b-values (0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm²) that are acquired in 3 orthogonal directions using a 3 Tesla MR scanner and a 32-multichannel receiver head coil. TR/TE = 4000ms/99ms, 4 averages, voxel size = 1.2 x 1.2 x 4 mm, total acquisition time = 12:28 min. In 2 healthy volunteers we investigated the variation of the IVIM parameters in the brain after inhalation of normal ambient air (22% O2, 78% N2), and a mixture of 5% CO₂ and air (5% CO₂, 22% O₂, 73% N₂), and in 5 healthy volunteers, after inhalation of ambient air (22% O₂, 78% N₂), a mixture of 5% CO₂ and air (5% CO₂, 22% O₂, 73% N₂), and 8% CO₂ in normal ambient air (8% CO₂, 22% O₂, 70% N₂), as well as pure oxygen (100% O₂).

Results
Signal decay curves were bi-exponential in the brain parenchyma of all volunteers. The perfusion fraction f and the pseudo-perfusion D* increased statistically significantly with incremental percentage of inhaled CO₂ in healthy volunteers (p < 0.05), and decreased while inhaling pure oxygen (although with p > 0.05).

Conclusion
The IVIM method is a valid method to measure brain perfusion quantitatively. Its major advantages in comparison to other techniques are: direct sensitivity to blood flow within the capillary bed (independent of arterial transit and venous blood volume); independence of iv-contrast injection; and robustness of the Stejskal-Tanner pulse sequence. These properties are key advantages for the IVIM method to become a practical perfusion imaging technique in the clinical setting.

Fig 1: (A) Variation of the perfusion fraction f and (B) the pseudo-diffusion coefficient D* under different gas mixtures inhalation. (*) means p < 0.05. Shown are means and standard deviations of the average of all pixels over the full covered brain in all volunteers.

Reference