3D GRASE ASL using a modified refocusing pulse phase cycling scheme compatible with vascular crusher gradients

David L. Thomas1, Enrico De Vita2, Xavier Golay1, and Maria A Fernandez-Seara1

1Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, London, United Kingdom; 2Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, London, United Kingdom; 3Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain

Introduction
Recent developments in the labelling schemes and image acquisition techniques used for arterial spin labelling (ASL) have greatly improved the SNR of the method, enabling it to become a feasible clinical option. One such improvement is the use of background suppression combined with a 3D imaging approach, such as 3D GRASE (1). 3D GRASE consists of an RF-refocused train of 2D-encoded EPI acquisitions, each differently phase encoded along the third dimension. In order to achieve good immunity to B1 inhomogeneity, the phase of the refocusing pulses relative to the excitation pulse is chosen to fulfill the CPMG condition (2). However, when vascular crusher gradients are used to reduce the intravascular signal, the CPMG condition can be violated (due to eddy currents and/or subject motion during the application of the gradient), leading to a second confounding source of signal decrease. A similar problem arises in diffusion-weighted imaging approaches, such as 3D GRASE (1). 3D GRASE ASL data in a way that is compatible for use with vascular crusher gradients, enabling model-free quantification (8). Future work will compare this principle to investigate the use of alternative refocusing pulse phasing schemes with 3D GRASE ASL, thus enabling the use of vascular crusher gradients with the technique and improving the accuracy of perfusion quantification.

Methods
Simulations: computer simulations using the extended phase graph (EPG) algorithm (5) were performed in Matlab (The Mathworks Inc) to investigate the robustness of the RF refocusing pulse phase schemes to B1 inhomogeneity and to the phase of the transverse magnetisation before the first refocusing pulse. The phasing schemes compared were: CPMG, XY-4 and XY-8 (6). The echo train length (ETL) was 11, to match the acquired data (see below). Other parameters used for the simulation were: half TE (time between 90 and first refocusing pulse) = 13.5ms; T1=1500ms; T2=200ms. For the XY-4 and XY-8 schemes, appropriate echo phases were reversed (i.e. multiplied by -1) and the complex conjugate of the even echoes was taken, as described in (3)).

MR acquisition: subjects were scanned on a 3T Magnetom TIM Trio scanner (Siemens Healthcare, Erlangen, Germany) using a background suppressed 3D GRASE pCASL sequence (7). The sequence parameters were: TE=54ms; TR=3.5s; resolution = 4x4x6mm3; 16 nominal partitions with 12.5% oversampling and 5/8 partial Fourier sampling, resulting in ETL=11; acquisition bandwidth 3004Hz/pixel. A balanced pCASL labelling pulse was used with duration 1.65s and a post-labeling delay of 1.5s. T1/T2 (time of inversion pulses prior to excitation) for the background suppression were 1.8s and 0.5s respectively. 32 averages were acquired giving a total scan time of 3min 51s. The XY-8 refocusing pulse phasing scheme was implemented, and images were acquired with and without vascular crushers along the partition encoding (head-foot) direction (Venc~5cm/s).

Results

![Figure 1](image.png)

Figure 1 shows the 3D GRASE echo train amplitude and phase stability for a refocusing pulse flip angle of 162° and different initial Mxy phases. The key points are that for the CPMG phasing scheme, the echo train amplitude shows a strong dependence on the initial phase (particularly poor when the initial Mxy phase is 90° i.e. perpendicular to the refocusing pulse phase) and the echo phase differs between echoes depending on the initial (unknown) Mxy phase. Both these effects are absent when the XY-8 phasing scheme is used: the echo amplitude and phase are independent of the initial Mxy phase, confirming that this phasing scheme is compatible for use with vascular crusher gradients. Figure 2 shows an example of four slices from a volunteer, acquired using XY-8 phasing with and without vascular crushers. Overall, image artefacts do not increase when vascular crushing is applied, and the signal intensity in the grey matter decreases by ~10-20%, reflecting suppression of the intravascular signal.

Discussion
We have shown that it is possible to acquire 3D GRASE ASL data in a way that is compatible with the use of vascular crusher gradients. This approach avoids the issues associated with violation of the CPMG condition and therefore can be used to suppress intravascular signal in ASL. This should result in more accurate quantification of tissue perfusion, either by reducing large vessel contamination in the general kinetic model or by enabling model-free quantification (8). Future work will compare these different approaches to perfusion quantification using this technique.

References