DCE-MRI for Predicting of Treatment Response of Head and Neck Squamous Cell Carcinoma

Steven K.K. Chow¹, Ann D King¹, David K.W. Yeung¹, Jing Yuan¹, Kunwar Bhatia¹, Anil T Ahuja¹, Alexander C Vlantis², and Brian K.H. Yu¹
¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong. ²Department of Otorhinolaryngology Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong. ³Department of Clinical Oncology, The Chinese University of Hong Kong

Introduction: Dynamic contrast-enhanced MRI (DCE-MRI) provides useful information on the vascularity of cancers and early reports suggest that this technique has the potential to predict and monitor radiotherapy (RT)/chemo-radiotherapy (CRT) treatment response in primary tumours¹ and metastatic nodes²,³ in head and neck squamous cell carcinoma (HNSCC). This study's aim was to investigate whether DCE-MRI at 3T may be used to obtain DCE parameters for predicting treatment response in HNSCC.

Material and Methods: DCE-MRI was performed in 20 patients (mean age, 61 years; age range, 41 - 93 years; males, 17; females, 3) with HNSCC before RT/CRT. MR imaging was performed on a 3T MRI scanner (Achieva, Philips Healthcare, Best, the Netherlands) using a 16 channel head and neck SENSE coil. T1 map was derived using two different flip angles [2°, 15°]. DCE-MRI sequence used was a short T1-weighted gradient echo sequence in the axial plane covering the entire tumor (TR 3.9 s, TE 0.9 s, pre-pulse TI 400 msec, flip angle 15°, matrix 128 × 128, number of slices 25, slice thickness 4 mm, number of dynamics 185, and scanning time 480 s). Contrast injection was given in the form of a bolus injection of gadopenetate dimeglumine (Dotarem, Guerbet, France) at a concentration of 0.1 mmol/kg of body weight. A power injection pump (Medrad, Pittsburgh, Pa) was used set at an injection rate of 2.5 mL/s through a 21-gauge intravenous catheter in the right antecubital vein. This injection was followed by a 20-ml saline flush at the same injection rate. Post-contrast enhanced images were also acquired as part of the routine clinical protocol. Data was processed using the Tofts⁴,⁵ pharmacokinetic model implemented on a Philips PRIDE research tool v5.2. ROIs were drawn and analyzed manually around the whole lesion of primary tumours and metastatic nodes (Fig. 1) by in-house developed software under Matlab (The MathWorks, USA) for histogram analysis. Three Ktrans parameters were measured: Ktrans mean and median, Ktrans skewness and Ktrans kurtosis. At primary or nodal sites imaged by DCE-MRI disease failure (DF) was determined by histological confirmation of SCC or serial increase in size on follow-up; disease control (DC) was defined as absence of any new mass or increase in size of any existing residual mass (minimum follow up 6 months). Statistical analysis comparing the Ktrans parameters and clinical outcome was performed using the Mann-Whitney U test.

Results: Pre-treatment DCE-MRI was performed at 19 primary and 21 metastatic nodal sites and residual tumour was identified at 4/19 (21%) primary and 5/21 (24%) metastatic nodal sites. No significant difference was found between the pre-treatment Ktrans parameters of tumors with DC and DF (Ktrans mean p = 0.30; Ktrans skewness p= 0.14; Ktrans kurtosis, p = 0.48). However, there was a trend towards DF in tumors with a lower Ktrans mean (Fig. 2), Ktrans skewness(Fig. 3) and Ktrans kurtosis (Fig. 4).

Discussion: Early results from this ongoing study have not reached statistical significance, however there appears to be a trend towards treatment failure in primary and nodal metastases with lower Ktrans means, which is in keeping with the previously published data¹,³. In addition, we have shown also that this histogram analysis to produces two further Ktrans parameter, Ktrans skewness and Ktrans kurtosis which has potential benefit for predicting treatment response, especially the Ktrans skewness which in accordance with the results of Shukla-Dave et al.² was lower in tumours that failed treatment.

References:

Acknowledgement: This study is fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China. RGC grant CUHK (ID: 2140594, Ref: 466008).

Figure 1 - A) Axial T1-W+C of a patient with a primary tongue base SCC (arrow) and a metastatic node (arrow). B) Ktrans map at the same level.

Figure 2 - The distribution of the pre-treatment Ktrans mean for the whole group of tumour sites, and for tumour sites with disease control (DC) and disease failure (DF).

Figure 3 - The distribution of the pre-treatment Ktrans skewness for the whole group of tumour sites, and for tumour sites with disease control (DC) and disease failure (DF).

Figure 4 - The distribution of the pre-treatment Ktrans kurtosis for the whole group of tumour sites, and for tumour sites with disease control (DC) and disease failure (DF).