In Vivo 17O Measurements of Water Rotational Correlation Time and Hydrodynamic Radius in Rat Brain

Xiao-Hong Zhu1, and Wei Chen1

1CMRR, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, United States

Introduction

Water content is extremely high in a biological system. It plays essential roles in maintaining normal cellular functionalities, and is sensitive to the microscopic environment of intra- and extra-cellular spaces. This study exploits new MR approaches for noninvasively assessing the rotational correlation time (τ_c) and hydrodynamic radius (R_h) of the brain tissue water. In vivo 17O MRS was used to measure the longitudinal relaxation time (T_1) of the quadrupolar 17O spin of water, and the T_1 value can be used to calculate water τ_c according to a simple, field-independent relation. 1H MRI was applied to image the brain translational diffusion coefficient (D_t), and the D_t/T_1 ratio can be used to determine R_h. These approaches were tested and evaluated at 9.4T using the rat brain model with varied brain temperature.

Theory

17O spin has a quantum number of $I = 5/2$ and possesses an electric quadrupolar moment that can interact with local electric field gradients. The temporal fluctuation in this interaction induced by molecular motion dominates the 17O relaxation process. For the water molecule with the extreme narrowing limit (i.e., $\tau_c \omega << 1$, ω is the 17O Larmor frequency), there is a simple relation between water T_1 (unit: ms) and τ_c (unit: picosecond) according to Eqs. [1] and [2]:

$$\frac{1}{T_1} = 3\pi \left(\frac{2I+3}{9} \right) \left(\frac{\eta \hbar}{3} \right) \tau_c$$ \hspace{0.5cm} [1]; \hspace{0.5cm} \tau_c = \frac{13.8}{T_1} \text{(ps)} \hspace{0.5cm} [2]; \hspace{0.5cm} \tau_cD_t = 2R_h^2/9 \hspace{0.5cm} [3]; \hspace{0.5cm} R_h = 78.8\sqrt{\frac{D_t}{T_1}} \hspace{0.5cm} [4],$$

where $\eta \hbar/3$ is the 17O quadrupolar coupling constant, η is an asymmetry parameter and they are constant and field independent.12

The relation between the translational diffusion coefficient (D_t; mm2s$^{-1}$ unit), τ_c and R_h (unit: Å) can be derived using the Stokes-Einstein and the Debye–Stokes–Einstein equations3, leading to Eq. [3] indicating that τ_cD_t should be a constant. Solving Eqs. [2] and [3] gives Eq. [4], in which D_t can be imaged using conventional DTI with two b factors, thus, R_h can be calculated according to Eq. [4].

Methods

All NMR experiments were conducted using Male Sprague–Dawley rats on a 9.4 T animal magnet interfaced to a Varian INOVA console. A dual surface-coil probe consisting of a butterfly-shape 1H coil (400 MHz) and an oval-shape 17O coil (~1cmx2 cm, 54.25 MHz) was used for acquiring 1H and 17O data, respectively. Non-localized 17O MR spectroscopy with inversion recovery pulse sequences and 8 inversion recovery times were applied for measuring T_1 values of natural abundance 2H/17O in the rat brains (6 animals) with varied body temperature (T: 27-37°C, or 300-310 K). 1H MR images were acquired using adiabatic spin-echo sequence with two b-values (0 and 668 s/mm2) to measure D_t in the ROI covering a large brain region and its temperature dependence (2 animals).

Results

Figure 1A shows the relation between the 17O T_1 of brain tissue water and the inverse of temperature ($1/T$) from different rat measurements. It indicates that the increasing temperature resulted in a longer T_1. The relation obeys a linear function ($R^2=0.983$). Figure 1B shows the relation between the rotational correlation time, τ_c, and the inverse of temperature ($1/T$), indicating a reversed linear relation ($R^2=0.976$), i.e., the increasing temperature shortened τ_c. Figure 2 displays the results of R_h measurements across the temperature range of 27-37°C, indicating an independent relation of R_h on temperature. Both rats had a similar trend though one animal (Rat A) showed a slightly higher R_h value compared to the other. The average R_h from two animals was 1.00±0.01 Å.

Discussion and Conclusion

In this study, we tested novel MR-based approaches for in vivo measurements of two important parameters of rotational correlation time and hydrodynamic radius that reflect the brain tissue water dynamics at the molecular scale. It was found that the brain water τ_c was in a range of several picoseconds and is sensitive to the brain temperature change; the measured τ_c values were longer than the bulk water τ_c. For instance, based on the linear relation shown in Fig. 1B, we predicted the tissue water τ_c value of 3.5 ps at 25°C in the rat brain, which was significantly longer than that of bulk water (=2.7 ps) at the same temperature.4 This result reveals that τ_c is sensitive to microscopic environment in the biological system as one would expect. The measured R_h values were stable across a large range of brain temperature (see Fig. 2). This result provides convincing evidence in supporting the validity of Eq. [3] and the methods proposed herein for in vivo measurements of brain water τ_c and R_h. The measured R_h value of ~1 Å was in line with the size of water molecular radius (~1.3 Å). This work indicates excellent utilities of in vivo 17O MRS methods for potentially imaging the microscopic dynamics and cellular environment of brain tissue water in vivo.

Acknowledgement

This work is supported in part by NIH grants NS41262, NS57560, P41 RR08079 and P30NS057091; and the KECK foundation.

References