Thalamic Hypometabolism in mTBI: Insight from Data Driven Voxelwise Analysis of 3D 1H-MR Spectroscopic Imaging
Xiaodan YAN1, Ivan Kirov1, and Oded Gonen1
1Radiology, New York University, New York, NY, United States

Introduction
Traumatic brain injury (TBI) and related disabilities affect nearly 5.3 million people in the U.S., imposing a costly economic burden of about $56 billion. Diagnosis based on the Glasgow Coma Scale (GCS) indicates that 85% of TBI cases are mild (GCS: 13-15). Mild-TBI (mTBI) pathology was previously believed to be “microscopic” and “diffuse” diseases. 1H MR spectroscopy imaging (MRSI) is a noninvasive technique for detecting microscopic and metabolic changes in the brain.
In order to investigate whether there are focal metabolic changes associated with mTBI, a data-driven voxelwise analysis was adapted after MRSI data was co-registered to a standard space. This rigorous statistical approach avoids the bias and errors from manually outlining regions of interest (ROI-s).

Methods & Results
Twenty-six mTBI patients and 13 age-matched controls were recruited, with GCS score 15-13 and confirmed loss of consciousness for less than 30 minutes. MRI and MRSI were acquired on 3 T Siemens Trio scanner with a TESM800 circularly-polarized, transmit-receive head-coil. 160 1-mm thick slices of Magnetization Prepared Rapid Gradient Echo (MP-RAGE): TE/ TI/TR = 2.6/800/1360 ms, was obtained with FOV=256×256 mm2 and 512×512 matrix. Our chemical-shift imaging (CSI) based auto-shim procedure then adjusted the scanner’s first and second order currents in 3-5 minutes [1]. Next, a 10 cm anterior-posterior (AP) × 8 cm left-right (LR) × 4.5 cm inferior-superior (SU) = 360 cm3 VOI was image-guided over the corpus callosum (Fig. 1). VOI was excised with T/E/R=35/1800 ms PRESS in three second-order Hadamard encoded slabs (6 slices) interleaved every TR along the IS direction for optimal signal-to-noise ratio (SNR) and spatial coverage [2]. The six slices were partitioned with 2D 16×16 CSI over a 16×16 cm (LR×AP) FOV, to yield 1.0±0.1×1.0×0.75 mm3 voxels. The 8×10 cm (LR×AP) VOI was defined in their planes with two 1.1 mm numerically optimized 180° pulses under 1.34 and 1.1 mTm to yield 8×10×6.480 voxels. The MR signal was acquired for 256 ms at ±1 kHz bandwidth. The 1H-MRSI data was processed offline using in-house software written in IDL. Data was voxel-shifted to align NAA grid with VOI. Then data was Fourier transformed in the AP, LR dimensions and Hadamard reconstructed along the IS direction. The 480 spectra were each frequency-aligned and zero-order phase corrected in reference to the NAA peak in every voxel. The relative levels of the i-th (i=NAA, Cr, Cho, ml) metabolite in the j-th voxel (j=1...480) voxel and k-th (k=1...40) measurement were estimated from their peak area, Sjk, using the SITools-FITT parametric spectral modeling package (using aspartate, glutamate, glutamine, Cho, Cr, ml, NAA and tauurine functions) of Soher et al.[3]. Each 16×16×6 Sjk matrices were then linearly interpolated to f=256×256×192 in order to have the same spatial resolution (Voxel=1 mm3 isotropic voxels) and FOV as the MP-RAGE images, using our in-house software. Note that although this interpolation does not add information to the data, it produces overlapping voxels that can reduce partial volume [4]. The 256×256×192 Sjk matrices were then aligned by our software with their anatomical MP-RAGE MRI based on the VOI offset information. The anatomical images of each individual were registered to the Talairach space [5] after skull-stripping with BrainWeb (http://afni.nimh.nih.gov/). Both the Sjk and Sijk were subsequently warped to their anatomical position in standard space by applying the same transformation matrix (Fig.2). After co-registering each individual data into the standard space, an independent two-sample t-test was applied to investigate group differences of metabolic concentration for each metabolite on each voxel. Significant clusters were detected with combined criteria on size of cluster and individual p-value, which was determined from AlphaSim software in AFNI.

Significant differences were shown in the thalamus for NAA, Cr, Cho and ml, and also at putamen for NAA and Cr (Fig.3). Average Sijk were extracted from these clusters for further quantification. Firstly, Sijk were divided by the CSI fraction of the corresponding voxel, then the concentration in the mTBI ROI for the i-th metabolite in the k-th measurement, Cijk, was obtained relative to a 2 L sphere of C18O2=12.5, 30, 7.5 and 12.5 mM NAA, Cr, Cho, ml and Glu in water at physiological ionic strength to load the coil. The VOI size and position (in the brain and the magnet) were chosen to be similar to the in vivo studies in order to sample the Bi profile of the coil closely as in [1], where Sijk is the average signal of the i-th metabolite in the phantom in the same units as Sijk. V180 and V180 are the RF voltage into 50 omega required for a non-selective 1M 180° inversion pulse on the k-th measurement and reference. The Cijk were then corrected for in vivo (T1, T2) and in vitro (T1, T2) relaxation time differences (2). Quantification of metabolic concentration in thalamus and putamen are shown in Table 1 and Fig. 4. Significant group difference is found for NAA, Cr, Cho and ml in thalamus, and significant difference for Cr and ml in putamen, with no mTBI patients showing decreased concentrations.

Discussion & Conclusion
The present study, with data-driven voxelwise analysis of 3D 1H MRSI, found decreased metabolic concentration of NAA, Cr, Cho and ml at thalamus and putamen. This is consistent with a few previous reports on thalamic dysfunction among mTBI, such as hypoxicavation from MRI study [6][7], decreased regional cerebral blood flow [8], which was correlated with neurocognitive functioning [8]. Furthermore, deep brain stimulation on the thalamus led to behavioral improvement in a severe TBI patient [9]. A recent study also found decreased thickness in thalamus and putamen [10]. The present study together with previous relevant studies, indicate hypometabolism of thalamus (and parts of putamen) may contribute to mTBI pathology.

References

Table 1: Quantification of metabolic concentration at thalamus and putamen.