Investigation on Neuroprotective Role of Caffeine against MPTP Induced Neurotoxicity in Mice using 13C NMR Spectroscopy
Puneet Bagga1, Suresh Kumar M1, and Anant Bahadur Patel1
1NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India

Introduction: Parkinson’s disease (PD) is a debilitating disorder of the human brain affecting 0.3% of the entire population and about 1-3% in people over 60 years of age. Neurotoxin MPTP has been used in rodent as well as non-human primate models for studying mechanisms involved in PD1. Caffeine uptake is negatively correlated with occurrence of PD in humans2. The objective of the current study was to evaluate the neuroprotective effect of caffeine in mouse model of MPTP neurotoxicity on regional glutamatergic and GABAergic function by using 1H-13C-NMR spectroscopy together with infusion of [1,6-13C$_2$]glucose.

Materials and Methods: All experiments were performed under protocols approved by the Institute Animal Ethics Committee. Three groups of four month old male C57BL6 mice were studied: Group A: Control (n=11); Group B: MPTP treated (n=13); Group C: Caffeine + MPTP treated (n=5). Group B mice were treated with MPTP (25 mg/kg, i.p.) for 8 days while Group C mice received caffeine (30 mg/kg, i.p.) 30 min prior to administration of MPTP and control mice (Group A) received normal saline only. For metabolic studies, overnight fasted mice were anesthetized with urethane and infused with [1,6-13C$_2$]glucose intravenously for 10 min3. At the end of the infusion, brain was frozen in situ in liquid N$_2$ and metabolites were extracted from frozen brain regions4. 1H-13C-NMR spectra were acquired from tissue extracts for the measurement of concentration and 13C enrichment of amino acids5.

Results and Discussion: Level of GABA and glutamine was found to be increased significantly (p<0.05) in striatum after chronic MPTP treatment which was not significantly different in mice treated with caffeine before MPTP administration. Cerebral metabolic study revealed that the 13C labeling of GluC$_4$, GABA$_{C2}$ and GlnC$_4$ from [1,6-13C$_2$]glucose was decreased significantly (p<0.01) in cortex, thalamus-hypothalamus, striatum and olfactory bulb indicating an impairment in glutamatergic and GABAergic TCA cycle and neurotransmission after treatment of MPTP. Pretreatment with caffeine led to a recovery of 13C labeling of amino acids indicating protection of neural function (glucose oxidation and neurotransmission) in cortex and olfactory bulb, while a partial protection was observed in striatum and thalamus-hypothalamus. Hence, it could be concluded that caffeine can partially act as a neuroprotectant against the MPTP induced neurotoxicity.

Fig. 3. Concentration of 13C labelled amino acids from [1,6-13C$_2$]glucose at 10 min in A. Cortex and B. Thalamus-hypothalamus. Values of GABA$_{C2}$ & GlnC$_4$ are presented as twice of the observed.

Acknowledgements: This study was supported by funding from Department of Science and Technology, India.