EVALUATION OF CORRELATION BETWEEN LUMBAR DISK DEGENERATION LEVEL AND FAT CONTENT OF MULTIFIDUS BY PROTON MAGNETIC RESONANCE SPECTROSCOPY

Chi-Cheng Wang1, Chien-Yu Liao2, Shin-Lin Shih3, and Chi-Long Juang4

1Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan, 2Medical Imaging, Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan, 3Department of Radiological Technology, Yuanpei University, Hsin Chiu, Taiwan

Introduction
The major function of inter-vertebral disc is served as the cushion of spine. Its degeneration will cause inflammation of nearby joints and induce low back pain1. And the usage of multifidus muscle is to remain the spine at center and keep the stability of inter-body. When dysfunction or atrophy occurred in this muscle, the consequential spinal instability will also generate the low back pain. We therefore intended to investigate the correlation between lumbar disc degeneration and fat content of multifidus muscle by non-invasive and no-radiation proton magnetic resonance spectroscopy (1H MRS) method, which can be used to investigate metabolite content in living animals and patients.

Material and Methods
Philips 3.0 T MR Imager (Philip, Achieva Xseries) was employed to acquire the first lumbar (L1) to the second sacral (S2) routine MRIs, the median sagittal turbo spin echo (TSE) T2 relaxation time maps (T2 map) of lumbar spine and the chemical shift images (CSI) of multifidus muscle next to the fourth and fifth inter-vertebral disc. Two groups of subjects, aged 20 to 50 were recruited: an experimental group composed of 30 patients that expressed complaints regarding lower back pain, and a control group composed of 30 volunteers that did not experience lower back pain. T2 map studies (TR 2500 ms, TE 7.1 ms) were utilized to measure average of T2 value of each disc for degeneration grading. CSI studies with CSI se_135 pulse sequence (TR 1500 ms, TE 135ms) were used to analyze muscle variations in the lumbar multifidus. Both of the water and fat signals were unsuppressed in order to calculate the fat/water ratio.

Results
After baseline and phase correction of CSI data, two radiologists were invited to evaluate the degeneration of multifidus muscle according to Kadar four levels grading method2. The fat/water ratios of multifidus were then calculated. It showed that the more severe the multifidus degraded the higher the fat it contained (Figure 1). By the way, the T2 Map results were used to obtain the T2 value of each lumbar disc nucleus. Then, Pfirrmann classification method1 was referred to correlate disc degeneration grade to different T2 ranges4. It appeared a positive linear correlation between severity of disc degradation and T2 values. After statistical analysis by SPSS 17 software, our results indicated disc’s T2 values were highly correlated with age, BMI and multifidus fat content of patients (Table 1).

Discussion
According to common sense, it is expectable that disc degeneration is closely correlated with age and BMI. However, the higher the lumbar multifidus fat/water ratio the more sever the disc degeneration is a new finding. This new finding may help to detect the disc degeneration in the early stage from fat content of surrounding multifidus in future denial diagramms, and will provide sufficient time to use advanced alternative therapies to increase the inter-vertebral disc hydration, which is more safe and effective than interventional therapies.

Table 1: Correlation of nucleus T2 values vs BMI, age and fat content of multifidus.

<table>
<thead>
<tr>
<th>Related variables</th>
<th>N</th>
<th>correlation coefficient</th>
<th>p-value</th>
<th>Net-related p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>60</td>
<td>-0.381</td>
<td>0.003**</td>
<td>-0.205</td>
</tr>
<tr>
<td>Age</td>
<td>60</td>
<td>-0.596</td>
<td>0.000***</td>
<td>-0.282</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>60</td>
<td>-0.613</td>
<td>0.000***</td>
<td>-0.423</td>
</tr>
</tbody>
</table>

Note: An asterisk (*) represents p <0.05; (**) on behalf of p <0.01; (****) behalf p <0.001 was significant.

Keywords: multifidus muscle, proton magnetic resonance spectroscopy (1H MRS), inter-vertebral disk degeneration

References