In vivo absolute quantification for mouse brain tumor using an inductively coupled synthetic signal injection method

Donghoon Lee1, Kenneth Marro1, Mark Mathis1, Eric Shankland1, Cecil Hayes1, Stacey Hansen2, and James Olson2

1Department of Radiology, University of Washington, Seattle, WA, United States, 2Fred Hutchinson Cancer Research Center, Seattle, WA, United States

Introduction
Medulloblastoma (MB) is the most common pediatric brain tumor. Five year survival rate for children younger than 3 years is in the range of 40% with current therapy. Prognosis following relapse is so poor that the 5-year survival remains less than 10%. For preclinical applications, the transgenic Smo mouse model, over-expressing Smoothened receptor in granule cell precursors, has been recognized as a highly effective brain tumor model that resembles human MB. MRI and MRS have been used as key methodologies for clinical brain tumor diagnosis due to their noninvasiveness and good spatial resolution. However, with respect to brain tumors, MRI and MRS have been largely limited to qualitatively detecting symptomatic regions for diagnosis and treatment follow-ups. In this study we used a noninvasive and quantitative MRS method to determine concentrations of 31P metabolites for mouse brain tumor in vivo. We used our MR absolute quantification method that injects an inductively coupled pseudo-signal during acquisition of real signal [1-3]. To improve the signal-to-noise ratio, we developed a dual tuned 1H/31P mouse brain probe with an injection coil incorporated for MRI/MRS measurements.

Methods
MRI/MRS data were acquired for normal and Smo mice on a Bruker 4.7 T horizontal bore magnet equipped with a Varian INOVA spectrometer using a dual tuned 1H/31P half volume coil optimized for mouse brain (Fig.1). The probe included an injector to introduce pseudo signals simultaneously with the real signals arising from the tissue. A half volume coil provides high signal sensitivity with a homogeneous region just large enough to cover a mouse brain. Localized 31P spectra were acquired using the ISIS (Image-selected in vivo spectroscopy) sequence to quantify metabolite contents in 8 μL volumes (TR= 1.5 s, sweep width = 5 kHz, number of points = 8 k, number of averages = 64 and total acquisition time = 16 min). Calibration measurements were conducted on a phantom containing inorganic phosphate (50 mM) and sodium tripolyphosphate (15 mM).

Results and Discussion
The dual tuned probe allowed 1H and 31P MRI/MRS without changing RF coils and repositioning the animals. Figure 2 shows two localized 31P MR spectra (volume elements in yellow squares) localized on a tumor of a Smo mouse and the cerebellum of a normal mouse. Concentrations, in mM, of various 31P metabolites are shown in Figure 2C. These results demonstrate that our MR quantification method can be applied to accurately quantify 31P metabolites in localized brain regions and may provide noninvasive biomarkers to monitor tumor progression and treatment responses.

Conclusions
We described an absolute quantification approach adapted for metabolite quantification of mouse brain tumor using synthetic signal injection and an optimized dual tuned 1H/31P RF coil. This approach allows reliable 31P metabolite determination in mouse brain.

References

Acknowledgements
This work was supported by NIH R21EB008166 and R21EB009438.