Cluster Formation in Solid-state Mixtures Restricts DNP of 129Xe

Nicholas N. Kuzma1, Huseyn Kara2*, Mehrdad Pourfathi1, Philip Manasseh1, Jan H. Ardenkjaer-Larsen1, Stephen J. Kadlecek1, and Rahim R. Rizi1

1Radiology, University of Pennsylvania, Philadelphia, PA, United States, 2Astronomy and Physics, University of Pennsylvania, Philadelphia, PA, United States, 3Department of Chemistry, Earlham College, Richmond, IN, United States, 4GE Healthcare, Brondby, Denmark

Introduction: Recent reports of 129Xe dynamic nuclear polarization (DNP) [1,2] spurred renewed interest in producing large quantities of highly polarized xenon for human-lung MRI. Compared to well-established 13C optical pumping schemes, DNP is performed in the solid state, with 103 times higher Xe density and, potentially, higher production rates. However, the reported 129Xe polarizations vary widely and are still considerably lower than 13C DNP. One of the reasons for these limitations may be a lack of experimental access to microscopic DNP parameters. Another reason is a poorly understood process of forming a solid sample from a gaseous ingredient. DNP requires an intimate mixture of the target (xenon) with the source of unpolarized electron spins, e.g., a free-radical molecule. Crystallization often leads to exclusion of foreign molecules from the solid, therefore a glasing agent (1-propanol) is added to achieve a homogeneous mixture of the radical with the target substance. Glassing behavior, however, is difficult to predict and to control, as slight variations in molecular mobility and affinity during freezing are thought to significantly affect polarization levels in otherwise similar organic molecular targets. To resolve these issues, we used 129Xe NMR spectroscopy with part-per-million (ppm) resolution as a local probe to investigate DNP in xenon/1-propanol/trityl-radical mixtures.

Methods: We built a hybrid DNP/NMR system based on an Oxford TMR7/88/15 Teslatron10 magnet, integrated 3He variable-temperature insert, and Oxford ITC-503 controller. 140-GHz microwave sources were generated by a computer-controlled primary source at 7.78 GHz and 18.3 dBm followed by a ×18 frequency multiplier integrated with a narrow-band 140-GHz/70-mW microwave amplifier. Our custom-made probe supported an overmolded cylindrical aluminum microwave chamber (~5 cm in height and diameter), attached to an overmolded circular stainless-steel waveguide. A two-turn copper NMR saddle coil wrapped around a PEEK sample holder accommodated a vertical 5-mm glass sample tube. The samples were prepared using a hermetically-sealed retractable electric stirrer from a 3:1 mixture (by volume) of 3 mg trityl (Finland acid) radical dissolved in 97 mg 1-propanol and (b) liquid 129Xe (BOC Gases, 99.997% purity, <1 ppm O$_2$) at the 195 K temperature of ethanol/dry ice bath and 4.2 atm pressure. After 1 min of vigorous stirring we changed the bath to liquid nitrogen (LN$_2$, at 77 K), then transferred the sample tube to our pre-cooled probe within several minutes. 129Xe NMR spectra were acquired with a home-built broadband NMR spectrometer. After applying baseline adjustment, FFT, and zero-phase correction, spectra were fitted to double-Gaussian line shapes, and the individual peak integrals were computed from the fit parameters. In cases where the narrow peak’s slightly non-Gaussian tail overlapped the broad peak significantly, a linear combination of a Gaussian and a Lorentzian of the same full width at half max (FWHM) was used to represent the narrow peak in multi-peak fits. Polarization was calculated by normalizing the peak integrals (obtained from the fit parameters) by the corresponding thermally-relaxed values measured without DNP at 1.43 K. The reported areas and widths of the broad Gaussian peaks were corrected for the effects of a 9.5-µs digitizer dead time.

Results and Discussion: Figure 1 shows the early evolution of 129Xe NMR spectra during DNP at $\nu=#140.067$ GHz (polarizing towards the ground state of the nuclear Zeeman system), and $\nu=#140.166$ GHz (inducing population inversion of nuclear spins). Spectra were taken every 3 min after destroying the polarization by 2000 hard NMR pulses. Fig. 1A illustrates a case of well-mixed, homogeneous Xe/1-propanol/trityl solid-state mixture. The width of the only 129Xe peak is consistent with broadening by uniformly distributed 1H atoms of 1-propanol molecules. This peak directly responds to DNP, growing in the positive (negative) directions due to $^\nu$+$^\nu$ (−$^\nu$) irradiation. Fig. 1B shows the effect of annealing this sample for 4 hours at ~120 K. The broad 129Xe peak is significantly narrower, indicating a reduced local density of surrounding 1H. A second, very narrow, 129Xe peak exhibits width and chemical shift relative to the main peak consistent with almost pure xenon clusters. Initially, the narrow peak appears to grow in thermal direction regardless of microwave frequency. However, at some point (Fig. 2C, ■), this tendency is overcome by DNP, inverting both peaks in the spectrum of Fig. 2B (□□). This peculiar time evolution of 129Xe spin polarization in pure-Xe clusters strongly suggests nuclear spin diffusion from the cluster boundary inward, while at the same time the T$_1$ process is relaxing the entire cluster towards its thermal equilibrium. Figure 1C shows the early DNP evolution of 129Xe spectra in an extreme case of cluster formation in a different sample, after gradual warming up to ~120 K in 45 hours. The broad peaks in Fig. 1C are narrower and much larger compared to Fig. 1B, and their response to DNP at $\nu=#140$ GHz is inverted starting from ~88. However, the most striking difference with sample I is the late-time evolution of the 129Xe signals (Fig. 2D). Even after 24 hours of DNP, 129Xe magnetization in pure xenon clusters keeps growing, exceeding that of 129Xe in the surrounding matrix. The average polarization remains fairly low. A simple model, incorporating spin diffusion and T$_1$ relaxation effects [3] was developed for a pure-xenon spherical cluster surrounded by a well-mixed xenon/1-propanol/trityl matrix, to fit the pure-xenon polarization data as a function of time t in Fig. 2C. The assumption of continuous 129Xe polarization across the cluster boundary is not supported by the data (e.g., compare polarizations in Figs. 2A and 2C), nor is it plausible, given the poor spectral overlap of the two 129Xe NMR peaks. Instead a polarization bottleneck at the cluster boundary was introduced, with the magnetization flux across the boundary proportional to the discontinuity in polarization: $^{\delta B}=\delta r=\delta r_{m}+\delta r_{xen}$. The resulting model is rather insensitive to the cluster radius R, but shows a high sensitivity to the intrinsic sample temperature T and a production rate ν of 129Xe in the clusters. A fit of this model to the data of Fig. 2C gives: $T_1=15$ ± 1 s, $\nu=3.6±0.2$ kHz, $\nu=0.8±0.2$ kHz. Conclusion: We observed that achieving a homogeneous mixture requires vigorous mechanical stirring of liquid xenon and 1-propanol/trityl-radical solution at 195 K, followed by rapid freezing below 90 K. Inefficient stirring and/or exposure to warm temperatures spontaneously creates pure xenon clusters in the solid-state glassy matrix, ultimately segregating 129Xe spins from the unpolarized electrons of the radical molecules. 129Xe atoms inside the clusters cannot be pumped by the DNP process directly, relying instead on the nuclear spin diffusion through a chain of 129Xe neighbors. This process is substantially restricted by the polarization bottleneck at the cluster boundaries and by significant overheating of the sample due to the microwaves.