Development and In-vivo Magnetic Resonance Imaging of Polymer Micelles Targeted to the Melanoma-Specific Marker MC1R

Natalie M Barkey1, Christian Preihs2, Heather H Cornell1, Gary Martinez3, Kevin N Sill4, Adam Carie4, Josef Vagner5, Jonathan L Sessler2, Robert J Gilles1, and David L Morse1

1Molecular and Functional Imaging, Moffitt Cancer Center, Tampa, FL, United States, 2Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, United States, 3Small Animal Molecular Imaging, Moffitt Cancer Center, Tampa, FL, United States, 4Intezyne Technologies, Inc, Tampa, FL, United States, 5The Bio5 Institute, University of Arizona, Tucson, AZ, United States

Introduction: Rationally-designed, polymer-based micelle carriers offer a promising approach to the delivery of therapeutic and/or diagnostic payloads. Systemic toxicity can be reduced by targeting micelles with cancer-specific ligands, and circulation time can be enhanced through the use of stabilized (cross-linked) micelles. Our target, the melanocortin 1 receptor (MC1R) has been extensively evaluated as a target for melanoma therapies. We have previously reported the development of a ligand specific to MC1R and we have shown that the conjugation of this ligand a triblock polymer micelle system does not result in a significant decrease in binding affinity. MC1R targeted and stabilized Gd-Tx micelles demonstrated tumor-specific MR contrast in vivo with clearance from the kidney and liver.

Materials and Methods: An alkyne functionalized MC1R ligand was conjugated to the terminal azide of a triblock polymer by copper-assisted click chemistry. A new gadolinium texaphyrin (Gd-Tx) was encapsulated for MR contrast. Gd-Tx micelle formulation was carried out in DMSO at 5%, 0.5% and 0.05% Gd-Tx weight loading with a sheer mixer and microfluidizer. Following formation, micelles were stabilized with a pH-sensitive Fe(III) crosslinking (XL) reaction. Binding affinity was determined through time-resolved Eu-fluorescence competition assays. In vitro MR phantoms were preformed on all micelle formulations to determine relaxitivity. In vivo studies were conducted on female SCID/beige mice injected with MC1R-expressing cells on the right and left flanks. MC1R-targeted XL micelles (T-XL, 0.5% Gd-Tx w/w) were injected via tail vein into mice when the tumors reached ca. 500 - 800 mm³. The uncrosslinked (UXL), as well as XL and UXL untargeted (UT) micelles were injected as a control. Mice were imaged on a Varian 7T small animal imaging system using a SEM sequence (te=8.62ms, tr=180ms).

Results: Optimal ligand loading was determined to be 5% w/w through Eu binding assays (lowest Kᵢ, 1.49 ± 0.12 nM, n = 4) and XL micelles bound to MC1R-expressing cells with significantly higher avidity than UXL micelles at all loading levels (p < 0.001). The binding avidity of the XL micelles at 5% ligand loading is 4 times greater than that of the UXL micelles (2.9 ± 0.42 Kᵢ and 12 ± 2.6 Kᵢ respectively, n = 4). Binding was not observed with untargeted micelles (XL and UXL).

In-vitro phantoms revealed that higher relaxitivity (lower T₁) was obtained with lower Gd-Tx percent weight loadings. This is most likely attributed the T₂* affects of gadolinium. Positive enhancement throughout the tumor was observed only in mice receiving the T-XL micelles. The T-XL group is significantly different from all other groups at 4h to 48h (p < 0.001 for 4h – 24; p < 0.05 at 48h). There were no statistical differences (t-test) among the UT-XL, T-UXL or UT-UXL groups at any time point. Contrast enhancement for the T-XL micelles peaks at 4h in the kidneys and 1h in the liver, and steadily decreases thereafter. This suggests that the micelles do not accumulate in these organs.

Conclusion: Herein, we have described the synthesis and characterization of MC1R targeted triblock polymer micelles with encapsulated gadolinium texaphyrin (Gd-Tx) and Fe(III) crosslinking for stabilization. These micelles selectively targeted MC1R-expressing xenograft tumors in vivo. To the best of our knowledge, this represents the first report of a targeted micelle system that is able to effectively, and selectively, accumulate in the tumor relative to other tissues.