
Lissette H. Deddens1, Gerald A. F. Van Tilborg1, Annette Van der Toorn1, Leonie E.M. Paulus2, Gustav J. Strijkers2, Gert Storm3, Willem J. M. Mulder4, Helga E. De Vries5, and Rick M. Dijkstra6

1Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands, 2Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 3Biopharmacy and Pharmaceutical Technology, Utrecht University, Utrecht, Netherlands, 4Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, United States, 5Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands

INTRODUCTION

Neuroinflammation is significantly involved in stroke pathophysiology, but underlying processes are still largely unclear. Target-specific MR imaging of inflammatory markers may improve our insights into the explicit involvement of distinct neuroinflammatory events, which might come way for new anti-inflammatory treatment strategies [1,2]. In this study, we compared the potential of gadolinium-containing liposomes (Gd-liposomes) and micron-sized particles of iron oxide (MPIO) for target-specific MRI of neuroinflammation after experimental stroke. We focused on intercellular adhesion molecule 1 (ICAM-1), which is upregulated on inflamed cerebrovascular endothelium during the first days post-stroke and therefore may serve as a marker of subacute neuroinflammation. All scans were conducted on a 9.4 T horizontal 20 cm bore MR system (Varian Inc., CA).

METHODS & RESULTS

Liposomes of 200 nm containing 25 mole% Gd-DTPA-DSA and 0.2 mole% rhodamine-PE were synthesized and anti-ICAM-1 antibody (αICAM-1) or irrelevant immunoglobulin G antibody (IgG) were coupled as described previously [3]. αICAM-1 or IgG were also coupled to 1.05 µm MPIO (ProMag™ 1 Series Bind-IT™, Bangs Laboratories, Inc., IN) as described by the manufacturer. Gd-liposomes displayed an r1 of 1.5 mM−1 s−1 and r2 of 18 mM−1 s−1, representative for T1 contrast agent. MPIO showed typical T1 contrast agent properties, with a relatively small effect on T1 (r1 = 0.28 mM−1 s−1), but a large effect on T2 (r2 = 91 mM−1 s−1).

To explore the suitability of these two contrast agent platforms in vitro, murine cerebrovascular bEnd3 cells were stimulated with TNFα for 24 h and incubated without, or with IgG-functionalized or ICAM-1-targeted Gd-liposomes (4 h) or MPIO (1 h), after which cells were thoroughly washed and pelleted for analysis. A small amount of cells was used to prepare cytosips for microscopic visualization. Cellular uptake of αICAM-1-Gd-liposomes and αICAM-1-MPIO was significant (p<0.01, Figure 1; B and D, respectively) when compared to IgG analogues (Figure 1; A en C). MRI of cell pellets showed a significant decrease (p<0.01) in T1 and T2 for αICAM-1-Gd-liposomes (T1 = 0.76±0.12 s, T2 = 16±2 ms) when compared to control cells without contrast agent (T1 = 1.90±0.01 s, T2 = 55±2 ms). IgG-Gd-liposomes (T1 = 1.81±0.01 s, T2 = 54±0 ms) induced no significant relaxation differences compared to control cells. No significant change in T1 was seen for αICAM-1-MPIO (T1 = 3.2±1.9 s) or Gd-MPIO-incubated cells (T1 = 2.4±0.2 s) when compared to control cells (T1 = 2.4±0.1 s). Due to strong T2-effects, a quantitative T2 value for cells incubated with αICAM-1-MPIO could not be calculated. No significant difference in T2 was measured between Gd-MPIO-incubated cells (T2 = 12±17 ms) and control cells (T2 = 21±15 ms).

To evaluate the use of these molecular MR contrast agent platforms for in vivo purposes, adult mice (C57Bl6) underwent a 30 min transient intraluminal occlusion of the right middle cerebral artery. Mice underwent MRI 24 h after stroke onset. Spin-echo MRI was applied for T2-mapping (TR/TE 2300/12-96 ms, NE 8, NA 4, 100x200x400 µm3, 21 slices) to detect the lesion. All groups had comparable lesion volumes (data not shown). T1-maps (inversion recovery Look-Locker: TR/TE 9000/4.5 ms, 40 images, α 10°, NA 2, 200x300x400 µm3, 21 slices) were acquired before and up to 3 h after i.v. injection of IgG- or αICAM-1-Gd-liposomes (5 µmol lipid, n=7 per group). T1*-weighted images (TR/TE 35/15 ms, NA 8, α 10°, 125x125x125 µm3) were acquired before and up to 2 h after i.v. injection of IgG-MPIO or αICAM-1-MPIO (100 µg Fe, n=5 per group).

Some mice were subjected to a follow-up scan at 48 h after stroke, i.e. 24 h after contrast agent injection (n=6 for Gd-liposomes groups, n=2 for MPIO groups). No significant difference was found on T1-maps of mice that received αICAM-1-Gd-liposomes compared to IgG-Gd-liposomes injection (Figure 2, upper graph) at any of the measured time points, although a significant decrease (p<0.05) of total brain signal intensity was measured during the first hours due to lasting circulation of Gd-liposomes and a significant increase in T1 (p<0.001) ipsilesional compared to contralesional at 24 h due to intrinsic T1 changes. After injection of αICAM-1-MPIO, however, a significant acute decrease (p<0.01) in ipsilesional T1*-weighted signal intensity was measured compared to IgG-MPIO injection (Figure 2, lower graph). This difference was present in the first hours, but absent at 24 h after injection.

10 µm cryo sections of sacrificed mice were co-stained with αPECAM-1 for fluorescent microscopy (Gd-liposomes) and with αICAM-1 for light microscopy (MPIO). Contrast agent was detected in all tissue sections of mice that received ICAM-1-targeted Gd-liposomes or MPIO (Figure 3; E and J), but not in tissue sections of mice that received IgG-functionalized contrast agent.

CONCLUSION

We conclude that both αICAM-1-Gd-liposomes and αICAM-1-MPIO specifically target ICAM-1 expressed on inflamed vasculature in mice after stroke, but that αICAM-1-MPIO provide a significantly higher level of contrast necessary for detection with in vivo MRI under conditions of disease-associated changes in intrinsic relaxtion times.

REFERENCES


Microscopic images of cells incubated with contrast agent. Figure 1

Relative changes in MRI signal intensity in ipsi- and contralesional tissue after contrast agent injection. Figure 2

In vivo T1 (A, F), pre- (B (T1), G (T1⁎w)), 20 min (C (T1), H (T1⁎w)) and 24 h (D (T1), I (T1⁎w)) post-contrast MR images and ex vivo microscopic images (E, J) of post-stroke mice brain injected with ICAM-1-targeted Gd-liposomes (A-E) or MPIO (F-J). Figure 3