MRI and Spectroscopy for Characterization of Primary Human Mutant IDH1 (IDH1-R132H) Glioblastoma Xenografts

Yanping Sun¹, Shakti Ramkissoon², Matthew A Theisen³, Amy S Freund⁴, Kristen L Jones⁵, Marika Hayashi⁶, Juan Wang⁷, Keith Ligon⁸, and Andrew L Kung¹,⁴

¹Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA, United States, ²Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, ³Bruker BioSpin Corp., Billerica, ⁴Pediatric Oncology, Children’s Hospital, Boston

Introduction

Gliomas are the most common and invariably fatal primary adult brain tumors. Studies have been performed to define sub-classes of gliomas, and to identify oncogenic alterations for the development of new targeted treatments. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) and excessive production of the onco-metabolite 2-hydroxyglutarate (2HG) have been found in adult low grade gliomas and secondary glioblastomas (GBMs) (1). To evaluate the effects of drug candidates inhibiting the IDH enzyme, an animal model is essential. In this study, we developed an intracranial primary xenograft GBM model harboring the IDH1-R132H mutation. In vivo MRI was used to monitor tumor growth and characterization; ex vivo MRS was used to study the metabolite spectrum with presence of 2HG in the tumor.

Methods

GBM Xenograft Model and Histologic Analysis: A primary GBM cell line (BT116) expressing IDH1-R132H mutation was derived from surgical resectional material acquired from a patient undergoing surgery on an IRB approved protocol. Tumor resected samples were mechanically dissociated and cell viability was assessed by trypan blue exclusion prior to stereotactic injection. SCID (IcrTac:ICR-Prkdcscid) mice were inoculated with BT116 cells in the right striatum. At the onset of neurological symptoms, mice were euthanized and cardiac perfused with 4% PFA prior to removal of the brain, which was then sectioned for paraffin embedding, H&E staining, immunohistochemistry for IDH1-R132H and histologic examination.

In vivo MR Scans: Mice bearing IDH1 mutant brain tumor xenografts were imaged every 3 weeks to monitor tumor development, and thereafter weekly. The MRI experiments were carried out on a Bruker 7T MRI system. Mice were anesthetized with 1-1.5% isoflurane in medical air. T2 weighted images were acquired to follow tumor growth with RARE sequence. T1, T2 and perfusion were acquired for characterization of the IDH tumor using IR, MSME and FAIR-RARE methods.

Ex vivo 1H HR-MAS: After in vivo MRI imaging, IDH-mutant tumor tissue were collected from 4 mice, snap frozen in liquid nitrogen and stored at –80°C. Tissue samples were placed in a 80µL disposable rotor insert, and then into a ceramic 4mm rotor. A small amount of D2O was added for lock. HR-MAS was acquired using a Bruker 500 MHz spectrometer at a temperature of 278k, 2250 Hz spin rate in an inverse TXI HR-MAS probe. A 1D presaturation sequence was run with 1s acquisition time (AQ), 1s relaxation delay (D1), 128 scans (NS), 20k acquired points (TD), 10kHz spectral width. A 2D adiabatic-TOCSY was performed to further obtain 2HG information. The data were analyzed using Bruker TopSpin. Bruker’s AMIX software was used to identify metabolites. For comparison purposes, 1D spectrum and 2D TOCSY data were obtained from one brain tumor sample without IDH mutation.

Results: Fig. 1 demonstrates the slow progression of the IDH-mutant GBM over time. MRI performed at 6 week post-injection showed no detectable tumor; however, by 16 weeks a minimal tumor burden was identified at the injection site. MRIs performed at 21 and 22 weeks showed tumor progression characterized by infiltrative growth throughout the right hemisphere in a ring-like distribution eventually resulting in a left-sided midline shift noted at 24 weeks. By week 25, the right hemisphere was extensively involved by tumor particularly evident in the right striatum, right cortex, bilateral periventricular regions and right corpus callosum with prominent extension into the left hemisphere along white matter tracts. Consistent with other types of brain tumors, the T1 and T2 value in tumor (T1t and T2t) were significantly larger than normal brain tissue (T1n and T2n): T1n=1409±47ms, with p=0.0005; T2t=60±4ms, T2n=47±1ms, with p=0.002. Tumor perfusion was lower than normal tissue with an average reduction of 54% ±8%.

Conclusions: The growth pattern and characterization of primary human mutant IDH1 glioblastoma observed by MRI were consistent with histologic findings in our animal model. Further, MRS of tumors with IDH1 mutations revealed the presence of 2HG which were not seen in a tumor with germline IDH1. MRI and MRS are powerful tools for non-invasively monitoring tumor growth and detecting 2HG in animal models, which may serve as a biomarker in development of novel drugs inhibiting the function of IDH mutant.


![Fig.1. Tumor growth over time by MRI](image1)

![Fig.2. Comparison of MRI and histologic findings](image2)

![Fig.3. 1D and 2D Spectrum of IDH Tumor](image3)