Identification of High Intensity Focused Ultrasound treated tumor tissue using a multiparametric MRI protocol and ISODATA analysis

Stefanie J.C.G. Hectors¹, Igor Jacobs¹, Gustav J. Strijkers¹, and Klaas Nicolay¹

¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands

Introduction
To advance the clinical applicability of ablation of malignant tumors by High Intensity Focused Ultrasound (HIFU) it is of key importance that residual or recurrent tumor tissue can be distinguished from successfully ablated tumor tissue. The goal of this study was to identify a set of clinically translatable Magnetic Resonance Imaging (MRI)-based biomarkers that can be used to evaluate HIFU treatment. To that aim a time-efficient and quantitative multiparametric MRI protocol was developed, which was used to longitudinally assess tumor tissue status after HIFU treatment in a murine tumor model. Image clustering techniques were used to identify HIFU-treated and non-treated tumor tissue. Histology of whole tumors was performed to correlate non-viable tumor fractions with HIFU-treated tumor fractions derived from the multiparametric MRI data.

Materials and methods

Tumor model
10-12 weeks-old Balb/c mice were inoculated subcutaneously in the right hind limb with 2x10⁶ CT26 colon carcinoma cells. MRI was performed 24h before (n=11), directly after (n=11) and 3 days after (n=6) ablation. MRI of a control group (n=2) that did not undergo HIFU treatment was done at the same three time points.

MRI protocol
MRI was performed with a 6.3T Bruker scanner. The multi-slice imaging protocol consisted of Look-Locker-based T₁ mapping, MLEV-prepared T₂ mapping, double-echo-echo-prepared Apparent Diffusion Coefficient (ADC) mapping and magnetization transfer rate (MTR) mapping. For all sequences signal read-out was performed with echo planar imaging (EPI) to allow for fast acquisition. The acquisition time of the entire protocol was approximately 50 minutes.

Ablation protocol
Tumor ablation was performed with an 8-element preclinical therapeutic ultrasound transducer (TIPS, Philips). Ablation settings were: acoustic power 12 W, frequency 1.4 MHz, duty cycle 50%, treatment time 30s, wait time 120s. The treatment area was defined by a 16 mm² square grid of 25 treatment points.

MRI data analysis
T₁, T₂, ADC and MTR values were calculated using the acquired images. Based on the parameter values, the tumor pixels originating from all the performed MRI experiments were segmented into clusters using the Iterative Self Organizing Data Analysis (ISODATA) technique. Clusters of which the fraction of pixels assigned to them was significantly (Student’s t-test, p<0.1) increased post ablation as compared to pre ablation were identified as HIFU-treated (ablation-associated) tumor tissue. The remaining clusters were assumed to represent non-treated tumor tissue.

Quantitative histological analysis
Excised tumors (n=5) were sectioned into 5 µm sections with an inter-section distance of 300 µm. Sections were stained for nicotinamide adenine dinucleotide (NADH) diaphorase activity, which is a marker for cell viability. ROIs of entire tumor tissue and non-viable tumor tissue were manually drawn on the brightfield microscopy images. From these ROIs the fractions of non-viable tumor tissue were calculated.

Results
Representative T₁-weighted images pre and post ablation are shown in Figure 1 A and B. After ablation a heterogeneous, hypo-intense region emerged. Results of the clustering analysis are shown in Figure 1 C and D. A region with significantly increased T₁, T₂, ADC and MTR was observed in HIFU-treated tumor tissue as compared to non-treated tumor tissue. A representative microscopy image of a section of ablated tumor tissue stained for NADH-diaphorase activity is shown in Figure 2. A clear white region is visible, which represents non-viable tumor tissue. A strong correlation (r=0.96, p<0.01) was observed between histologically derived non-viable tumor fractions and HIFU-treated tumor tissue fractions estimated from MRI (Figure 3).

Conclusion
These results show that HIFU-treated tumor tissue can be distinguished from non-treated tumor tissue using a time-efficient multiparametric MRI protocol combined with an ISODATA clustering algorithm. A strong correlation was observed between MRI-derived HIFU-treated tumor fractions and histologically derived non-viable tumor tissue fractions.

Acknowledgement
This research was supported by the Center for Translational Molecular Medicine (VOLTA).

Introduction
To advance the clinical applicability of ablation of malignant tumors by High Intensity Focused Ultrasound (HIFU) it is of key importance that residual or recurrent tumor tissue can be distinguished from successfully ablated tumor tissue. The goal of this study was to identify a set of clinically translatable Magnetic Resonance Imaging (MRI)-based biomarkers that can be used to evaluate HIFU treatment. To that aim a time-efficient and quantitative multiparametric MRI protocol was developed, which was used to longitudinally assess tumor tissue status after HIFU treatment in a murine tumor model. Image clustering techniques were used to identify HIFU-treated and non-treated tumor tissue. Histology of whole tumors was performed to correlate non-viable tumor fractions with HIFU-treated tumor fractions derived from the multiparametric MRI data.

Materials and methods

Tumor model
10-12 weeks-old Balb/c mice were inoculated subcutaneously in the right hind limb with 2x10⁶ CT26 colon carcinoma cells. MRI was performed 24h before (n=11), directly after (n=11) and 3 days after (n=6) ablation. MRI of a control group (n=2) that did not undergo HIFU treatment was done at the same three time points.

MRI protocol
MRI was performed with a 6.3T Bruker scanner. The multi-slice imaging protocol consisted of Look-Locker-based T₁ mapping, MLEV-prepared T₂ mapping, double-echo-echo-prepared Apparent Diffusion Coefficient (ADC) mapping and magnetization transfer rate (MTR) mapping. For all sequences signal read-out was performed with echo planar imaging (EPI) to allow for fast acquisition. The acquisition time of the entire protocol was approximately 50 minutes.

Ablation protocol
Tumor ablation was performed with an 8-element preclinical therapeutic ultrasound transducer (TIPS, Philips). Ablation settings were: acoustic power 12 W, frequency 1.4 MHz, duty cycle 50%, treatment time 30s, wait time 120s. The treatment area was defined by a 16 mm² square grid of 25 treatment points.

MRI data analysis
T₁, T₂, ADC and MTR values were calculated using the acquired images. Based on the parameter values, the tumor pixels originating from all the performed MRI experiments were segmented into clusters using the Iterative Self Organizing Data Analysis (ISODATA) technique. Clusters of which the fraction of pixels assigned to them was significantly (Student’s t-test, p<0.1) increased post ablation as compared to pre ablation were identified as HIFU-treated (ablation-associated) tumor tissue. The remaining clusters were assumed to represent non-treated tumor tissue.

Quantitative histological analysis
Excised tumors (n=5) were sectioned into 5 µm sections with an inter-section distance of 300 µm. Sections were stained for nicotinamide adenine dinucleotide (NADH) diaphorase activity, which is a marker for cell viability. ROIs of entire tumor tissue and non-viable tumor tissue were manually drawn on the brightfield microscopy images. From these ROIs the fractions of non-viable tumor tissue were calculated.

Results
Representative T₁-weighted images pre and post ablation are shown in Figure 1 A and B. After ablation a heterogeneous, hypo-intense region emerged. Results of the clustering analysis are shown in Figure 1 C and D. After ablation a region appeared in which pixels were assigned to clusters that were identified as HIFU-treated tumor tissue. Mean values of the different MRI parameters are listed in Table 1. A significant increase in R₁, R₂, ADC and MTR was observed in HIFU-treated tumor tissue as compared to non-treated tumor tissue. A representative microscopy image of a section of ablated tumor tissue stained for NADH-diaphorase activity is shown in Figure 2. A clear white region is visible, which represents non-viable tumor tissue. A strong correlation (r=0.96, p<0.01) was observed between histologically derived non-viable tumor fractions and HIFU-treated tumor tissue fractions estimated from MRI (Figure 3).

Conclusion
These results show that HIFU-treated tumor tissue can be distinguished from non-treated tumor tissue using a time-efficient multiparametric MRI protocol combined with an ISODATA clustering algorithm. A strong correlation was observed between MRI-derived HIFU-treated tumor fractions and histologically derived non-viable tumor tissue fractions.

Acknowledgement
This research was supported by the Center for Translational Molecular Medicine (VOLTA).