Contrast Agent-Free High Resolution MRI for Prostate Cancer Detection Using a Two Compartment Inversion Recovery (TCIR) Technique.

Patrik Zamecnik1, Grzegorz Bauman2, Julien Dinkel1,3, Heinz-Peter Schlemmer1, and Thomas Gaass1

1Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 2Department of Medical Physics, German Cancer Research Center (DKFZ), Heidelberg, Germany, 3Department of Radiology, Massachusetts General Hospital, Boston, Germany

Introduction

Multiparametric MRI showed high detection rates for prostate cancer in several studies [1,2]. Such MRI protocols consist usually of T2-weighted images, diffusion weighted imaging (DWI), apparent diffusion coefficient (ADC) maps, MR-spectroscopy (MRS) and dynamic contrast enhanced (DCE) acquisitions, which make the use of intravenous contrast media necessary. Despite relatively rare allergic reactions after contrast media administration the next problem is evident: prostate carcinoma is typically a disease of elderly male patients, in which reduced renal function could be seen more frequently [3]. This fact may cause problems for contrast media use. Since DCE-MRI requires necessary information for prostate cancer detection, an alternative non-contrast-enhanced MRI technique, which is showing additional tissue properties useful for cancer detection is highly desirable. A new contrast media-free technique (two compartment inversion recovery - TCIR) was recently proposed to measure the blood volume fraction (BV) within tissue and thus to provide diagnostic information similar to the tissue perfusion [4]. The aim of this work is to validate the feasibility of TCIR approach for prostate cancer detection by comparison with the standard T2w, DCE- and DWI-sequences.

Methods

Ten male patients with histologically proven prostate cancer underwent an diagnostic MRI using transverse T2-TSE (TE= 143 ms, TR=5150 ms, slice thickness= 3 mm, FoV = 381x300, matrix size = 254x448), DWI (EPI sequence, TE = 52, TR = 3100, slice thickness = 3 mm, FoV = 280x210, matrix size = 96x128, b-values = 0, 50, 100, 200, 250, 800) incl. calculation of ADC maps and DCE-MRI (TWIST sequence, TE = 2.2, TR = 4.4, slice thickness = 3 mm, FoV = 300x400, matrix size = 192x256, temporal resolution 9 seconds, 31 repetitions, contrast media: gadobutrol (Gadovist®, Bayer Healthcare Pharmaceuticals, Berlin, Germany)). Additionally, the TCIR technique (in transverse orientation) was performed before contrast administration to estimate the fractional blood volume (BV) maps. As already proposed [2], the basis of the TCIR mapping technique is the assumption, that the measured signal in the prostate arises from two separate proton compartments, one intravascular and one extravascular. The difference in longitudinal relaxation times T1_int and T1_ext is employed to extract the volume fraction of intravascular protons. The T1 mapping was performed using a HASTE sequence: TR/TE = 5000/33 ms, slice thickness = 6 mm, BW = 473 Hz/px, flip angle = 180°, TI = 0, 200, 400, 600, 700, 800, 900, 1000, 1050, 1100, 1150, 1250, 1300, 1350, 1400, 1500, 1700, 1900, 2000, 3000 ms. The patients were examined on a 3 T whole-body MR-scanner (Magnetom Trio, Siemens Healthcare, Erlangen, Germany) using a combination body and spine matrix coils. The localization of tumor suspect areas were determined on the standard sequences under knowledge of the biopsy results and were compared with the TCIR approach. The mean BV-values within regions of interest (ROI) in the normal peripheral zone and central gland and in the tumor were calculated.

Results

In all patients the suspect areas could be identified. The location and dimension of the suspect areas in TCIR images showed the best visual correlation with the very early DCE MRI (see Fig. 1 and 2). Using TCIR the detection of the suspect areas was possible in the peripheral zone and the central gland. The BV value within the tumor areas was significant higher (0.874 ± 0.079) compared to the normal peripheral zone (0.382 ± 0.079), p < 0.001, and to the normal central gland (0.781 ± 0.067), p < 0.03.

Discussion

In this feasibility study we have shown that using the TCIR technique it was possible to generate good quality high-resolution maps of the fractional blood volume in the prostate without using a contrast agent. The fractional blood volume (BV) correlated visually with very early DCE MRI and the suspect areas could be delineated in similar quality compared to the DCE MRI. From technical point of view there is also potential for improvement. For better absolute quantitative evaluation of the BV, it has to be corrected for a potential T1-effect as well as for the influence of free water, which both lead to an overestimation of the fractional blood volume within the prostate. Summarizing our results, TCIR has a high potential for prostate cancer detection because of its high spatial resolution and sensitivity, first of all in patients, which cannot be examined using contrast media. This technique could be used routinely as an important part of completely non-invasive multiparametric MRI-protocols for prostate diagnostics, disclaiming the intravenous administration of contrast media. However, this should be confirmed in further clinical studies with much higher number of patients.

References: