Quantification of Hepatic Macrosteatosis in Living, Related Liver Donors: Comparison of the Accuracy of Breath-hold MR Imaging Techniques

Jeong Min Lee1, In Pyung Hwang2, Joon Koo Han3, Berthold Kiefer1, Andre de Oliverira4, Mun Young Pack1, and Byung Ihn Choi2

1Radiology, Seoul National University Hospital, Seoul, Seoul, Korea, Republic of; 2Seoul National University Hospital, 3Siemens Healthcare

PURPOSE: To compare the accuracy of dual gradient echo magnetic resonance imaging (DGE-MRI), T2*-corrected chemical shift imaging (CSI), and T2-corrected multi-echo breath-hold T2-corrected proton magnetic resonance spectroscopy (BH 1H-MRS) for the diagnosis and quantitative estimation of hepatic steatosis (HS) in potential liver donors using the histopathology as the reference standard.

MATERIALS AND METHODS: 51 potential liver donors were included. All patients were imaged with three kinds of breath-hold MR imaging techniques including DGE-MRI, T2*-corrected CSI using triple-echo spoiled gradient-echo sequence, and BH 1H-MRS on a 3-T MR scanner. The three MR techniques and pathology values of macrosteatosis were correlated using the Spearman-correlation-coefficient. In 10 patients, T2*-corrected CSI and BH 1H-MRS were examined to assess short-term reproducibility by using analysis of variance testing within subject and between separate imaging sessions.

RESULTS: The results of the hepatic-fat fraction estimated on T2*-corrected CSI (γ=0.719) and 1H-MRS (γ=0.707) were better correlated with the histologic degree of macrosteatosis that those on DGE-MRI (γ=0.622, P<0.001). Combined use of 1H-MRS and T2*-corrected CSI showed 100% sensitivity and 90% specificity for detecting HS, respectively. Analysis of variance of two imaging sessions with the T2*-corrected CSI and 1H-MRS techniques indicated no significant variance in 10 subjects (p > 0.05).

CONCLUSION: Combined use of the T2*-corrected CSI and BH 1H-MRS allowed a rapid and noninvasive diagnosis of HS in potential living liver donors; it can also help to avoid unnecessary biopsies in these patients.

Figure 1. From left to right: DGE-MRI, T2*-corrected CSI and T2-corrected multiecho BH 1H-MRS