Quantitative Diffusion Weighted MRI biomarkers for the evaluation of Crohn's ileitis

Moti Freiman1, Jeanette M Perez-Rossello1, Michael J Callahan1, Mark Bittman1, Robert V Mulkern1, Athos Bousvaros1, and Simon K Warfield1

1Radiology, Children's Hospital Boston/Harvard Medical School, Boston, MA, United States, 2Inflammatory Bowel Disease Center, Children's Hospital Boston/Harvard Medical School, Boston, MA, United States

Introduction: Crohn’s disease (CD) is a chronic inflammatory bowel disease of unknown etiology which affects between 400,000 and 600,000 people in North America (1). CD can involve any part of the gastrointestinal tract, and has a chronic, relapsing, and remitting clinical course. Long-standing inflammation can result in bowel obstruction, stricture, fistula, and/or abscess. In addition, there is an increased risk for small and large bowel malignancy in areas of chronic inflammation (2). Assessment of inflammatory activity plays a crucial role in the individualized management of patients with CD. Therefore, the need for a reliable, non-invasive imaging evaluation for inflammatory activity is crucial for the effective management of CD. Recently, diffusion weighted MR imaging (DW-MRI) has been shown to reflect inflammatory activity (3,4). These studies utilized a mono-exponential function associated with the so-called, apparent diffusion coefficient (ADC) as the decay rate parameter, expressed conveniently in units of μm²/ms to quantify changes in pure diffusive motion of the water molecules (1). While it is unclear why intestinal inflammatory lesions have restricted diffusion that is translated into a hyperintense signal on DW-MRI and decreased ADC values relative to normal segments (5), it is well known that the inflammation process involves vascular dilation and changes in blood flow (6) which can alter the ADC measurements depending on the acquisition parameters (2). The intra-voxel incoherent motion bi-exponential model (IVIM) (7,8), attempts to separate intra- and extracellular water diffusion from the incoherent motion of water molecules within the endothelial blood capillaries. It is the goal of this work to investigate mono-exponential ADC and IVIM model parameters as quantitative biomarkers for the detection of Crohn’s ileitis in comparison with MR enterography radiological evaluation.

Materials and Methods: DW-MRI data was acquired from 29 patients with histologically proven Crohn’s disease (17 males, 12 females; mean age is 14.6 years; age range between 5 and 24 years) who underwent an MRI study between Jan. and Oct. 2011. MR imaging studies of the abdominal organs were carried out using a 1.5-T unit (Magnetom Avanto, Siemens Medical Solutions, Erlangen, Germany) and a body-matrix coil and spine array coil for signal reception. We performed free-breathing single-shot echo-planar imaging using the following parameters: repetition time/echo time (TR/TE) = 6800/59 ms, SPAIR fat suppression, matrix size = 192 x 192, field of view = 300 x 260 mm, slice thickness/gap = 5 mm/0.5 mm, 40 axial slices, 8 b-values = 5, 50, 100, 200, 270, 400, 600, 800 s/mm² with 4 averages. The clinical and anatomic protocol included Polyethylene glycol administration for bowel distention and gadolinium enhanced dynamic 3D VIBE (volume interpolated breath hold exam) in the coronal plane. Disease activity was defined as abnormal bowel wall thickening and enhancement in the gadolinium enhanced images. Mono-exponential ADC maps were computed using b-values = 0, 50, 200 s/mm² (ADC0-50,200) (4) and 0, 50, 800 s/mm² (ADC0-50,800) (3). The IVIM model was fitted to the data for each voxel in the ROI with a maximum likelihood estimator that accounts for the Rician noise in the DW-MRI data as proposed by Freiman et al (9). Mean ADC and IVIM values were calculated over regions of interest in the ileum as defined by a board certified radiologist. Two-sample Kolmogorov–Smirnov test was used to test for statistical significance of the difference of ADC and IVIM values between the normal and abnormal ileum segments. Logistic regression model was used to evaluate the joint power of the IVIM parameters in classification of normal/abnormal ileum segments. Receiver operating characteristic (ROC) curves were used to test the sensitivity and specificity of the ADC and the IVIM logistic regression model.

Results: Fig. 1 presents representative examples of the fitted curves using the different models (ADC0-50, ADC0-50,800, IVIM) to two representative samples from normal and abnormal ileum segments. Two co-sampled K-knotlogonov–Smirnov test was used to test for statistical significance of the difference of ADC and IVIM values between the normal and abnormal ileum segments. Logistic regression model was used to evaluate the joint power of the IVIM parameters in classification of normal/abnormal ileum segments. Receiver operating characteristic (ROC) curves were used to assess the sensitivity and specificity of the ADC and the IVIM logistic regression model.

Discussion: Inflammation processes in the ileum are associated with vascular dilation and changes in blood supply which may alter the quantitative measurements derived from DW-MRI. Our investigation show that there is no significant difference in the pure diffusion compartment as expressed by the D parameter from the IVIM model, while the changes in blood supply are reflected in the significant difference in the f parameter from the IVIM model. The changes in blood supply also make the ADC highly sensitive to the acquisition parameters, in particular to the choice of b-values used for ADC calculations. In practice the ADC0-50,800 biomarker obtained the best sensitivity-specificity ratio for the separation between abnormal and normal ileum segments in the study cohort.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal (µm²/ms)</th>
<th>Abnormal (µm²/ms)</th>
<th>p-value</th>
<th>Area under the curve (AUC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC0-50</td>
<td>3.2 (0.9)</td>
<td>1.8 (0.5)</td>
<td>6.49*10^-4</td>
<td>0.9</td>
</tr>
<tr>
<td>ADC0-50,800</td>
<td>2.5 (0.5)</td>
<td>1.6 (0.3)</td>
<td>2.68*10^-4</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Fig. 1: Representative example of the observed signal and the fitted curves using the different models (ADC0,50, ADC0-50,800, IVIM) to two representative samples from normal and abnormal ileum segments.

Fig. 2: ROC analysis of the sensitivity-specificity ratio of the DW-MRI biomarkers for the separation of abnormal and normal ileum segments.

Bibliography: