Imaging of the choroid plexus using perfusion MR imaging: is it possible?

Olivier Baledent1, Bader Charaani1, Olivier Pottie1, Catherine Gondry-Jouet2, Jadwiga Zmudka3, Jean-Marie Serot1, and Roger Bouzerara1

1Image Processing Unit, University Hospital, Amiens, France, 2Radiology, University Hospital, Amiens, France, 3Geriatric Unit, University Hospital, Amiens, France

INTRODUCTION
The cerebrospinal fluid (CSF) present within the cranium has an important role not only in development but also in hydrocephalus or degenerative processes such as Alzheimer's disease. The CSF that undergoes a continuous turnover is produced in small structures located in the cerebral ventricles: the choroid plexus (CP). The highly vascularized CP are composed of fenestrated capillaries surrounded with ependymal cells. A rapid and safe method for evaluating CP functionality in vivo is still lacking. The goal of our study is to evaluate dynamic T2*-weighted perfusion MR imaging as an exploration method for assessment of CP functionality and the age-related changes of associated parameters.

METHODS
Patients: Fifteen patients (40+/- 14 years old; range: 21-68) who were referred for cerebral contrast enhanced imaging with small intracranial tumors were retrospectively studied.

Imaging: MR Imaging was performed on a 3T HDx MR Scanner (GE Healthcare, Milwaukee, WI). Gradient-echo echo planar images were acquired after bolus injection of gadolinium-based contrast agent (0.5 mmol/ml). Acquisition parameters were: TR: 1500 ms, TE: 30 ms, Flip angle: 60°, FOV: 24x24 cm², Slice thickness: 5 mm, gap: 1 mm, Matrix: 128x128, 1 NEX, 65 volumes of 20-22 slices.

Data analysis: The software, developed in situ, uses the previously modeled MR signal in terms of the combined T1- and T2-effects of gadolinium-based contrast agent. In this model, the measured relaxation change in T2*: can be approximated as a linear combination of whole brain average relaxivity in non-enhancing voxels and its time integral:

\[\Delta R_2^*(t) = K_1 \Delta R_2^*(t) - K_2 \int_0^t \Delta R_2^*(\tau) \, d\tau \]

The K2 term reflects the effects of the capillary leakage characterized by the gadolinium T1 enhancement-effect observed in the EPI signal (figure 1-A). After semi-automatic segmentation of the CP (figure 1-B) using the T1 enhancement property, several maps were computed: permeability K2, relative cerebral blood volume rCBV, mean transit time MTT, signal slope decrease SSD.

Statistical analysis: Pearson correlation tests were used.

RESULTS AND DISCUSSION
The mean volume of functional segmented CP was: 2124 +/- 504 mm³ [1413-3206] and the permeability factor K2 was: 0.033 +/- 0.18 s⁻¹. K2 and SSD significantly decreased (r=0.79-p<10⁻³ and r=0.71-p=0.03, respectively) with subject's age (figure 1-C) whereas MTT significantly increased with subject's age. No significant correlation was found for age-related changes in rCBV. The large decrease in CP permeability is in line with the age-related changes in CP recently observed in animal models in terms of CSF secretion. The MTT increase indicates significant structural changes as observed by Serot et al. in anatomopathological studies. The functional impact of these structural changes has been observed: decrease in transthyretin secretion and beta-amyloid clearance associated with reduced CSF turn-over.

![Figure 1](image-url)

Figure 1: A- Gradient echo T2* signal before and after passage of gadolinium based contrast agent (CA) in permeable tissue: after extravasation in the extracellular space, the CA T1-effect generates the observed signal enhancement. B- Software view showing the segmented plexus choroid with associated MR signal. C- Variations of permeability factor K2 as a function of age.

CONCLUSION
Our feasibility study showed that dynamic T2*-weighted perfusion MR imaging could be a useful tool for segmentation and assessment of functional parameters of choroid plexus. Clinical applications such as neurodegenerative diseases can be considered and specific functional studies of CP could lead to open new ways of research toward the comprehension of evolution mechanisms involved in Alzheimer’s disease.

REFERENCES
Boxerman & al. rCBV maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade(...) AJNR 2006
Donahue & al. Utility of simultaneously acquired GE and SE cerebral blood volume and morphology maps in brain tumor patients. MRM 2000
Chen & al. Age-related changes in choroid plexus and blood–cerebrospinal fluid barrier function in the sheep. Experimental Gerontology 2009