Visualization of beta-cells in a diabetic mouse model by Manganese enhanced MRI

YauYau Wai1,2, Jyuhn-Huarng Juang3, Chia-Rui Shen4, Zei-Tsan Tsai1, Jiun-Jie Wang4,5, and YiMing Wu3

1Medical Imaging and Radiological Sciences, ChangGung University, TaoYuan, Taiwan, Taiwan, 2Chang Gung Memorial Hospital, TaoYuan, Taiwan, Taiwan, 3Chang Gung Memorial Hospital, 4ChangGung University, 5molecular imaging center, Chang Gung Memorial Hospital

Introduction:
Loss of beta-cells in type 1 and type 2 diabetes leads to metabolic dysregulation and inability to maintain normoglycemia. Noninvasive imaging of beta-cells in vivo would therefore provide a valuable diagnostic and research tool for follow-up the progression of diabetes and evaluation of the effects of therapeutic intervention. Manganese (Mn(2+)) is a T1-shortening contrast agent that enters cells such as pancreatic beta-cells through voltage-gated calcium channels. Mn(2+)-enhanced MRI of the pancreas after glucose infusion would allow for noninvasive detection of beta-cells in vivo. Diabetic and islet transplant animal models were developed for the purpose of aggressive intervention and histology proof in the current project. MRI was used to monitor pancreatic endogenous islets and the final cell destination in vivo after islet transplantation.

Methods and Materials:
Both nondiabetic mouse (C57BL/6, 24 g) and diabetic mouse (C57BL/6, 10 g) were fasted for 8 hours and anesthetized with 1.25% isoflurane before imaging. 20 minutes prior to MR acquisition, glucose (1.56 mg/g) was injected intravenously via tail vein followed by intraperitoneal MnCl2 (0.1 mol/g) administration. MR images were acquired using a 7 Tesla MR scanner (ClinScan, Bruker, Germany) using a gradient echo sequence with the following parameters: TR/TE/Flip angle=2.31/0.76 ms/20 degree, FOV=34×26 mm², slice thickness = 0.5 mm. Signal enhancement ratio was calculated by (SI_{Mn}-SI_0) / SI_0, where SI_{Mn} and SI_0 are signal intensity before and after Mn infusion, respectively.

Results:
Figure 1 shows the T1 weighted image before (a) and after MnCl2 infusion(b) in a normal mouse, the arrowhead indicates the pancreas, which was enhanced after the MnCl2 infusion. Figure 2 shows the signal enhancement ratio of the normal control and the diabetic animal after MnCl2 infusion. The enhancement after MnCl2 infusion is significantly reduced in the diseased animal.

Conclusion
Mn(2+) enhanced MRI of the pancreas after glucose infusion would allow for noninvasive detection of beta-cells in vivo.

Fig. 1 enhancement from MnCl2 in the pancreas of the nondiabetic mouse.

Fig. 2 reduced enhancement in the diabetes mouse when compared to the normal