In Vivo Characterization of Rabbit Eosinophilic Meningitis Caused by Angiostrongylus Cantonensis

Hao-Hung Tsai1,2, Ling-Yuh Shyu1, Chia-Ling Chi1, Hui-Chen Tsai1, Hsu-Wei Lin1, and Jun-Cheng Weng1,2

1School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan, 2Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, 3Department of Parasitology, Chung Shan Medical University, Taichung, Taiwan, 4School of Medicine, Chung Shan Medical University, Taichung, Taiwan

Introduction

Angiostrongylus cantonensis (A. cantonensis) is a parasitic nematode which causes Angiostrongylusiasis, the most common cause of eosinophilic meningitis in Southeast Asia and the Pacific Basin [1]. The roundworm commonly resides in the pulmonary arteries and hearts of rats, giving it the nickname the rat lungworm. Snails are the primary intermediate hosts, where larvae develop until they are infective. Humans are incidental hosts and may become infected after ingestion of the worms in raw snails from contaminated vegetables [2]. The typical clinical presentation is acute meningitis with an eosinophilic pleocytosis frequently accompanied by encephalopathy and other symptoms of central nervous system (CNS). Patients usually present an insidious or sudden onset of excruciating headache, neck stiffness,nausea, vomiting and paraesthesia.

The diagnosis of eosinophilic meningitis can be arrived at through detection of elevated cranial pressure and increased volumes of eosophils. The diagnosis of the cause of eosinophilic meningitis and the presence of A. cantonensis is remarkably more difficult. A spinal tap, or a sample of cerebrospinal fluid (CSF), must be taken to search for A. cantonensis worms or larvae. A. cantonensis is virtually undetectable in the CSF of half of the infected individuals. Current methods of detecting specific antigens associated with A. cantonensis are also unreliable [3, 4]. Therefore, the purpose of this study was to determine the longitudinal effects of rabbit brain infected with 700 larvae of A. cantonensis by advanced MRI techniques, and the results were verified by histopathological study.

Materials and Methods

Each of four male New Zealand white rabbits was weight about 2.5 kg and was infected by the 700 3rd-stage larvae of A. cantonensis though the metal feeding tube. The 3rd-stage larvae of A. cantonensis were collected from Taichung, Taiwan. The rabbits were anesthetized with 3-4% isoflurane mixed with O2 and maintained with 1-2% isoflurane during the MRI scanning. The warm water circulation system was used keeping rabbit body temperature about 37°C in the MRI room. MR scans were performed before and each week after infection of A. cantonensis. In order to determine the degree of inflammatory after infection, gadodiamide was given by intravenously injecting 151 mg/kg of a 0.5 M Gd-DTPA solution.

The experiment was performed on a 1.5T MRI system (Magnetom Sonata, Siemens Medical Systems, Erlangen, Germany). Double loop array coils were used for RF reception. Multi-slice turbo spin echo (TSE) sequence was performed to obtain whole brain T2W (TR/TE = 4300/114ms, in-plane resolution = 0.39×0.19×1.5 mm3 and slice thickness = 1.5 mm) and FLAIR images (TR/TE/TI=8630/155/2500ms, in-plane resolution = 0.78×0.39×2 mm3 and slice thickness = 1.5 mm). To improve detection sensitivity over the full extent of T2 changes caused by the infection of A. cantonensis, image data for R2 mapping were acquired. To obtain R2 mapping, single-slice multi-echo spin echo sequence with half spatial resolution was performed to acquire 32 sets of images corresponding to 32 different TEs, ranging from 15 to 480 ms, to sample along the decay of transverse magnetization. In the end, T1W imaging (TR/TE = 570/40ms, in-plane resolution = 0.39×0.19×1.5 mm3 and slice thickness = 1.5 mm) was performed immediately after T1-shortening contrast agent (gadodiamide) administration. The data were analyzed by Mathematica and Matlab.

Results and Discussions

Abnormal findings on MR images were observed in each rabbit infected with 700 A. cantonensis larvae. Our MR images showed the ventricles of each infected rabbit gradually became dilatation over time (Fig. 1). In T2W images, the ventricles size increased from 1.896% ± 0.333% to 5.710% ± 1.228% in the brain of the rabbit infected after 42 days (Fig. 1A, 1B). In FLAIR, it increased from 1.185% ± 0.185% to 3.368% ± 0.584% in brain of the rabbit infected in the same period (Fig. 1B, 2B). The ventricular dilatation was obvious 14 days after the infection. The results implied that hydrocephalus was caused by A. cantonensis 14 days after the infection. In addition, the mean R2 values (R2=1/T2) of whole rabbit brain decreased from 8.66 ± 0.74 to 8.98 ± 0.33 ms⁻¹ in R2 mapping (Fig. 1D, 1E). The signal intensity of the ventricle changed was also found in T1W images 21 days after the infection (Fig. 1C). It implied CSF content changed, and may be due to hemorrhage or inflammatory cells. The size of ventricular choroid plexus increased gradually from 0.978% ± 0.122% to 5.620% ± 0.622% in T1W images (Fig. 2C). This implied ventricular choroid plexus hyperplasia was induced by A. cantonensis infection. More subjects were needed to improve statistic significance. In the future, the non-invasive MRI platform developed in rabbits can be extended for early diagnosis in humans.

Conclusions

Our MRI results showed pathological changes of brain, including ventricular dilatation and choroid plexus enlargement, with time in the rabbit infected with 700 A. cantonensis larvae. Therefore, MRI was suggested to be a non-invasive technique in detecting eosinophilic meningitis resulted from A. cantonensis. In the future, the non-invasive MRI platform developed in rabbits can be extended for early diagnosis in humans.

References