Selective hippocampal vulnerability to LPS-induced inflammation revealed by multi-parametric MRI

Ana Belen Martín-Recuero1, Agnieszka Krzyzanowska1, Pilar López-Larrubia2, Carlos Avendaño3, and Sebastian Cerdán1

1Instituto de Investigaciones Biomédicas, Alberto Sols, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 2Anatomy, Histology & Neuroscience, Medical School, Autonoma Univ. of Madrid, Madrid, Spain

Introduction/Purpose:
Cerebral inflammatory responses underlie the most morbid and prevalent neurological or traumatic disorders, including cancer, ischemia or neurodegeneration. A better understanding of inflammation processes paves the way for more accurate diagnoses and effective therapies. However in many cases, biomaging methods are not able to discriminate clearly between the pathology and the associated inflammatory response. On these grounds, the development of non-invasive methods to identify and characterize the inflammatory component entails considerable therapeutic and diagnostic interest. We report here, for the first time to our knowledge, a longitudinal multi-parametric MRI characterization of the cerebral inflammatory component developed after the systemic administration of Lipopolysaccharide (LPS).

Subjects and Methods:
Adult male mice C57BL/6 (n=6) received an i.p. injection of LPS from Escherichia Coli Serotype 0127:B8 (5mg/kg). MRI studies of the mouse brain were carried out in a Bruker Pharmascan 7T/16 scanner. T1, T2, Apparent Diffusion Coefficient (ADC) in the head-foot (H-F), left-right (L-R) and the antero-posterior (A-P) directions, and Magnetization Transfer (MT) maps were routinely acquired before, one and three days after the LPS administration, when maximal inflammation develops. Parametric values were determined using in house software and quantified in three brain regions: cortex, thalamus and hippocampus (Figure 1). Mice were perfused transcardially 21 days after the injection and brain sections were cut on cryostat (20 µm thick). The sections were immunostained with Rabbit anti IBA1 (1:1000, Wako Chemicals) and Mouse anti GFAP (1:400, Sigma-Aldrich).

Results:
LPS treatment induced significant variations in the A-P direction of the ADC and MT values in the hippocampus (p=0.03, p=0.02, respectively) and in the A-P and L-R direction of the ADC in the cortex (p=0.04, p=0.06) one day after the injection, appearing changes in T2 (p=0.001) and increasing the effects of MT and ADC (p=0.01, p=0.02) in the hippocampus after three days, but disappearing in the cortical region (Figure 2). Immunostaining results with GFAP showed astrogliosis exclusively in the hippocampus (Figure 3, upper right image). No increase in microglial immunoreactivity was observed 21 days after LPS treatment.

Conclusions:
Taken together our results allow characterizing by MRI the time evolution of cerebral inflammation after LPS administration. The inflamed regions depict longer T2, lower MT and higher ADC than the normal brain. The hippocampus appears to be the most vulnerable region, most probably undergoing a reactive vasogenic edema to inflammation, with undetectable effects of LPS in the thalamus and smaller reversible damage in the cortical region. Immunostaining results correlate well with the MRI characterization, demonstrating hippocampal astrogliosis, reactive to astrocytic edema in this region.

References: