Predicting response to hyperbaric oxygen radiotherapy treatment in high grade gliomas using Magnetic Resonance Imaging techniques

Nuria Arias1, Jesús Pacheco-Torres1, and Pilar López-Larrubia1
1Biomedical Research Institute, CSIC, Madrid, Madrid, Spain

Introduction. Several studies indicate a relationship between tumor hypoxia and tumor aggressiveness, poor outcome (1, 2) and resistance to therapies (3, 4). Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the vasculature to deliver satisfactory oxygen provisions. Due to a misregulation of angiogenic processes, neoplastic tissues often show hypoxic areas heterogeneously distributed in the tumor mass. There are several methods to measure hypoxia, but none of them have the desired requirements for routine clinical application (5). Due to its special characteristics, Magnetic Resonance Imaging (MRI) is an interesting alternative to measure tumor oxygenation. Several treatments have been specifically developed to modulate hypoxia in order to improve therapy success (photodynamic therapy, breathing a gas with high oxygen content during radiotherapy...). However, it would be desirable to know a priori those tumors sensitive to these modulation and, thus, that could benefit from these types of treatments. BOLD (Blood Oxygenation Level Dependent) contrast, based on T2* changes induced by deoxyhemoglobin, is sensitive to vascular oxygenation and blood flow. Recently, several studies have shown a way to measure tissue oxygenation level based on T1 shortening of molecular oxygen in the tissue (6). These images have been called TOLD (Tissue Oxygenation Level Dependent) (5)

Methods. High grade gliomas were induced in Wistar rats (200-220 g) by stereotaxic injection of C6 cells in the right caudate nucleus. MRI evaluations were carried out in a horizontal 7T system (Bruker Pharmascan®) with a 1H selective birdcage resonator of 38 mm. Animals were anesthetized with 2% isofluorane in oxygen, placed in a heated probe and physiologically monitored. To measure tumors volume, T2-weighted (T2W) and T1-weighted (T1W) images with contrast agent (Magnevist®, Bayer) were acquired at different times after cells injection. BOLD and TOLD contrast images were acquired the day previous to radiation treatment. A series of interleaved TOLD (T1W) and BOLD (T2*W) images were acquired during transition from air (baseline) to oxygen breathing. 12 animals with tumors were studied: 6 were irradiated while breathing pure oxygen (hyperoxia) and 6 while breathing air (normoxia). Treatment was performed in a biologic irradiator (Shepherd Mark J-30 852 R² = 0.7968 00 Ci 137Cs) using 10 Gy doses. Therapy success was assessed by measuring the relative tumor volume at the end of the experiment compared to the tumor size the day previous to the radiation. MRI images were analyzed with Image J (NIH, USA) software. Tumor changes in TOLD and BOLD where normalized respective to the change of growth volume (figure 2A) at the end of experiment (figure 2B). Tumors showing ΔTOLD bigger than 40% respond well to therapy whereas tumors depicting ΔTOLD smaller than 40% do not respond to therapy.

Results. Figure 1 shows how different tumors evolve with therapy. Tumors treated in normoxic conditions (blue in figure 1) stop growing immediately after irradiation but, after three or four days, they grow again. On the other hand, tumors treated in hyperoxic conditions (green in figure 1) decrease their tumor size. There are also tumors treated in hypoxic conditions that behave similarly to normoxic ones (red line in figure 1). Similar tumor volumes can depict completely different responses. We can establish that BOLD response has not relation with the relative increase of growth volume (figure 2A) at the end of the experiment. Nevertheless, ΔTOLD depict an inverse relationship with tumor size at the end of the experiment (figure 2B). Tumors showing ΔTOLD bigger than 40% respond well to therapy whereas tumors depicting ΔTOLD smaller than 40% do not respond to therapy.

Discussion. In this study, we propose BOLD and TOLD MRI acquisitions to detect those tumors that would improve their response to radiotherapy by breathing a gas with high oxygen content during radiation. These results are in good agreement with previous data in prostate tumor lines (7,8). Since these measurements are entirely non-invasive, they appear worthy of further exploration and correlation with response to other therapies.